Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhé
a) Ta có:
MH vuông góc AB
AB vuông góc AC
=> MH//AC
\(\Rightarrow\widehat{BMH}=\widehat{BCA}\)(Đồng vị)
Ta có:
MK vuông góc AC
AB vuông góc AC
=> MK//AB
\(\Rightarrow\widehat{KMC}=\widehat{HBM}\)(Đồng vị)
b) Ta có:
\(\widehat{HMK}=180^o-\left(\widehat{HMK}+\widehat{KMC}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(\widehat{ACB}+\widehat{HBM}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(\widehat{ACB}+\widehat{ABC}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(180^o-\widehat{BAC}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(180^o-90^o\right)\)
\(\Rightarrow\widehat{HMK}=90^o\)
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
=>ΔABM=ΔACM
=>MB=MC
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AH=AK
Xét ΔABC có AH/AB=AK/AC
nên HK//BC
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
a)Xét tam giác AKM và tam giác AHM,có:
góc KAM=góc HAM(AM là tia phân giác của góc CAB) (1)
AM là cạnh chung (2)
CK vuông góc vs AC tại K(gt)
MH vuông góc vs AB tại H(gt)
=) góc AKM=góc AHM=90 độ (3)
Từ (1),(2),(3)=)tam giác AKM=tam giác AHM(ch-gn)
=)MH = MK(Hai cạnh tg ứng)