Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)
Hình tự vẽ.
a) Xét \(Δ\)ABH vuông tại A và \(Δ\)MBH vuông tại M có:
BH chung
\(ABH=\widehat{MBH}\)(suy từ gt)
=> \(Δ\)ABH = \(Δ\)MBH (ch -gn)
b) Vì AB = BM nên ΔΔABM cân tại B
=> BAMˆBAM^ = BMAˆBMA^
Áp dụng tc tổng 3 góc trong 1 tg ta có:
BAMˆBAM^ + BMAˆBMA^ + NBCˆNBC^ = 180o
=> 2BAMˆBAM^ = 180o - NBCˆNBC^
=> BAMˆBAM^ = 180o−NBCˆ2180o−NBC^2 (3)
Do ΔΔABH = ΔΔMBH (câu a)
=> AH = MH (2 cạnh t/ư)
a) .
Xét tam giác ABH và tam giác MBH có :
AB = BH(BE là tia phân giác)
góc ABH = góc HBM(BE là tia phân giác)
BH cạnh chung
đo đó : tam giác ABH = tam giác MBH (c.g c) (1)
b)
Từ (1) suy ra:
tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực của đoạn thẳng AM