Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
K ẻ B N ⊥ A C N ∈ A C . B A C ⏜ = 60 0 ⇒ A B N ⏜ = 30 0 ⇒ A N = A B 2 = c 2 ⇒ B N 2 = A B 2 − A N 2 = 3 c 2 4 ⇒ B C 2 = B N 2 + C N 2 = 3 c 2 4 + b − c 2 2 = b 2 + c 2 − b c ⇒ B C = b 2 + c 2 − b c
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. Xét tam giác đều BCE có R = O E = 2 3 E M = 2 B C 3 3.2 = 1 3 . 3 b 2 + c 2 − b c
a:Xét tứ giác BHKC có \(\widehat{BHC}=\widehat{BKC}=90^0\)
nên BHKC là tứ giác nội tiếp
b: Xét đường tròn ngoại tiếp tứ giác BHKC có
\(\widehat{BHC}\) là góc nội tiếp chắn cung BC
\(\widehat{HKB}\) là góc nội tiếp chắn cung HB
mà BC>HB
nên \(\widehat{BHC}>\widehat{HKB}\)
a: Nửa chu vi tam giác ABC là:
\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)
\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)
=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)
=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)
=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB^2+\dfrac{135}{64}=4\)
=>\(HB^2=\dfrac{121}{64}\)
=>HB=11/8(cm)
HB+HC=BC
=>HC+11/8=4
=>HC=4-11/8=21/8(cm)
b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB
Vì BK\(\perp\)AC và CE\(\perp\)AB
nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)
=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)
=>\(\widehat{BAC}\simeq104^029'\)
Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)
=>\(\widehat{B}\simeq46^034'\)
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}+104^029'+46^034'=180^0\)
=>\(\widehat{ACB}=28^057'\)
a: Xét ΔDMC vuông tại M và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔDMC\(\sim\)ΔABC