Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 1 A D B C E
Xét \(\Delta CDE\) có \(\widehat{E_1}>\widehat{A}\), mà \(\widehat{A}\) là góc tù nên \(\widehat{E_1}\) là góc tù.
Suy ra CD > DE. (1)
Xét \(\Delta BCD\) có \(\widehat{D_1}>\widehat{A}\) nên \(\widehat{D_1}\) là góc tù. Suy ra BC > CD. (2)
Từ (1) và (2) suy ra BC > DE.
+ ΔADE có ∠E1 là góc ngoài ⇒ ∠E1 > ∠A
Mà ∠A > 90o ⇒ ∠E1 > 90o
ΔCDE có ∠E1 tù ⇒ CD là cạnh lớn nhất ⇒ CD > DE (1)
+ Tương tự xét ΔADC có ∠D1 là góc ngoài
⇒ ∠D1 > ∠A ⇒ ∠D1 > 90o (vì ∠A > 90º)
ΔBDC có ∠D1 tù ⇒ BC là cạnh lớn nhất ⇒ BC > CD (2)
Từ (1) và (2) suy ra BC > DE.
a) Tam giác ABC = tam giác DAE (2 cạnh góc vuông) (1)
(AB = AD ; BAC^ = DAE^ = 90o; AC=AE)
=> BC = DE (2 cạnh t/ứng)
b) DE giao BC = H
(1) => C^ = E^
Mà B^ + C^ = 90o => B^ + E^ = 90o => tam giác BHE vuông tại H hay DE _|_ BC
c) tam giác EAC vuông cân tại A (A^ = 90o ; AE=AC)
=> AEC^ = 45o
(câu c hơi lạ, nếu tính AEC^ thì sao lại cho 4B^ = 5C^ . Có phải là tính AED^ ko???)
a) Vì góc BAC và góc EAD là hai góc kề bù
nên <BAC + <EAD = 180* ( tính chất hai góc kề bù )
hay 90* + <EAD = 180*
<EAD = 180* - 90*
<EAD = 90*
Xét Tam giác ABC và Tam giác ADE có :
AB = AD (GT)
<BAC = <EAD ( = 90* )
AC = AE(GT)
=> Tam giác ABC = Tam giác ADE ( c.g.c )
=> BC = DE (dpcm)
b) Gọi giao điểm của tia ED và tia BC là G
Vì Tam giác ABC = Tam giác ADE (cmt)
=> <C = <E (1)
Xét Tam giác ABC có :
<B + <A + <C = 180* (2)
Xét Tam giác BEG có :
<B + <E + <G = 180* (3)
TC : <B chung (4)
Từ (10 ; (2) ; (3) và (4)
=> <A = <G
mà <A = 90*
Nên <G =90*
=> DE vuông góc BC (dpcm)
c) Xét Tam giác ABC có :
<A + <B + <C =180*
hay 90* + <B + <C = 180*
<B + <C = 180* - 90*
<B +<C = 90*
Theo đề bài ta có :
<B x 4 = <C x 5
=> <B/5 = <C/4
AD tính chất dãy tỉ số bằng nhau ta được :
<B/5 = <C/4 = <B + <C/5+4 = 90*/9 =10*
Từ <B/5 = 10* => <B = 10* x 5 = 50*
Từ <C/4 = 10* => <C = 10* x 4 = 40*
Xét Tam giác BEG có :
<B + <G + <BEC = 180*
hay 50* + 90* + <BEC = 180*
<BEC = 180* -50* -90*
<BEC = 40*
hay <AEC = 40*
Vậy , <AEC = 40*
+ ΔADE có ∠E1 là góc ngoài ⇒ ∠E1 > ∠A
Mà ∠A > 90o ⇒ ∠E1 > 90o
ΔCDE có ∠E1 tù ⇒ CD là cạnh lớn nhất ⇒ CD > DE (1)
+ Tương tự xét ΔADC có ∠D1 là góc ngoài
⇒ ∠D1 > ∠A ⇒ ∠D1 > 90o (vì ∠A > 90º)
ΔBDC có ∠D1 tù ⇒ BC là cạnh lớn nhất ⇒ BC > CD (2)
Từ (1) và (2) suy ra BC > DE.
A B C D 1 2 1 2 E
a ) Ta có : gócA = 90o
=> gócD1 và gócB1 đều là góc nhọn ( vì trong tam giác vuông thì có một góc vuông và 2 góc nhọn )
=> gócD1 < 90o ( Số đo của góc nhọn luôn luôn bé hơn số đo của góc vuông )
=> gócD1 < gócA ( 1 )
Mà : gócD1 là góc đối diện của BA
( 2 )
: gócA là góc đối diện của BD
Từ ( 1 ) và ( 2 ) suy ra : BA < BD ( Vì trong một tam giác cạnh đối diện với góc lớn hơn thì có số đo lớn hơn ) ( 3 )
Ta có : gócD1 + gócD2 = gócADC ( DB nằm giữa DA và DC )
=> gócD2 = gócADC - gócD1 = góc bẹt - góc nhọn = góc tù ( Vì góc bẹt = 180o , góc nhọn bé hơn 90o )
=> gócD2 > 90o ( Vì số đo của góc tù lớn hơn góc vuông )
=> gócD2 > gócA ( 4 )
Mà : gócA là góc đối diện với BD
( 5 )
: gócD2 là góc đối diện với BC
Từ ( 4 ) và ( 5 ) suy ra : BC > BD ( Vì trong tam giác cạnh đối diện với góc có số đo lớn hơn thì lớn hơn ) ( 6 )
Từ ( 3 ) và ( 6 ) suy ra : BA < BD < BC ( điều phải chứng minh )
b ) Ta có : gócD2 > gócA ( cmt ) ( 7 )
Mà : gócD2 là góc đối diện với BC
( 8 )
: gócA là góc đối diện với DE
Từ ( 7 ) và ( 8 ) suy ra : BC > DE ( Vì trong tam giác cạnh đối diện với ............................................ )
Học tốt !
A=90 độ =>AEC là góc nhọn và CEB là góc tù
Xét tam giác CEB có CEB là góc tù =>BC sẽ là cạnh lớn nhất
=>BC>CE (1)
A=90 độ => ADE là góc nhọn và EDC là góc tù
Xét tam giác EDC có EDC là góc tù => EC sẽ là cạnh lớn nhất trong tam giác
=>EC>DE (2)
Từ (1) và (2) =>DE<BC (BC>CE mà CE lại >DE)