K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Gọi giao điểm cua BP và AR là S

Xét tam giác BPH có:

BH=PH(giả thiết)

 góc BHP=90"(vì AH là đường cao)

=>tam giác BHP vuông cân tại H=>góc BPH=45'=>góc APS=45"   (1)

Tương tự ta cũng có tam giác AHR vuông cân tại H=>góc HAS=45"  (2)

Cộng từng về của (1) và (2) =>góc ASP=90"

Hay BP vông góc với AR

Xét tam giác BAR có

BP vuông góc với AR(cmt)

AH vuông góc Với BC(giả thiết)

BP cắt AH tại P=>P là trực tâm của tam giác BAR

17 tháng 5 2018

Hình vẽ: https://imgur.com/4l52wae

Giải:

Gọi G là gio điểm của BP và AR

Góc AHR = 90 độ mà HA = HR nên tam giác HAR vuông cân tại H => góc HAR = góc HRA = 45 độ

Góc PHB = 90 độ mà HP = HB nên tam giác HPB vuông cân tại H => góc HPB = góc HBP = 45 độ

Mà góc APG = góc HPB (đối đỉnh) nên góc APG = 45 độ

=> góc AGP = 180 - 45 - 45 = 90 (độ) 

=> BG là đường cao của tm giác ABR 

Mà BG cắt AH tại P nên P là trực tâm tam giác BAR

17 tháng 5 2018

Gọi giao điểm của BP với AR là I

+, Xét tam giác HBP vuông cân tại H và tam giác HAR vuông cân tại H ta có:

\(\widehat{BPH}=\widehat{RAH}=45^o\) (theo tính chất của tam giác vuông cân)

\(\widehat{BPH}=\widehat{API}\left(d.d\right)\) \(\Rightarrow\widehat{API}=45^o\)

+, Xét tam giác API ta có:

\(\widehat{AIP}=180^o-\widehat{IAP}-\widehat{IPA}=180^o-45^o-45^o=90^o\)

(theo tính chất tổng 3 góc trong tam giác)

\(\Rightarrow BP\perp AR=\left\{I\right\}\)

Mặt khác \(BI\cap AH=\left\{P\right\}\)

Do đó P là trực tâm tam giác ABR(đpcm)

10 tháng 3 2019

( bạn tự vẽ hình)

a, xét tam giác ABE và tam giác ACE có:

AE chung

AB=AC (gt)

góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)

=> tam giác ABE=tam giác ACE

b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)

=> góc BEA=góc CEA ( 2 góc tương ứng)

mà 2 góc này kề bù

=> góc BEA=góc CEA= 180 độ : 2= 90 độ 

=> AE vuông góc với BC (2)

từ (1) và (2) ta có AE là đường trung trực của BC.

22 tháng 2 2020

a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ 
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.