Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AM là trung tuyến tam giác ABC.
Có tam giác ABC vuông tại A
=> AM = \(\frac{1}{2}\)BC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
=> AM = MC = AC (= \(\frac{1}{2}\)BC)
=> Tam giác AMC đều
=> Góc ACB = 60o
Xét tam giác ABC có góc A + góc B + góc ACB = 180o (Định lí tổng 3 góc của 1 tam giác)
=> 90o + góc B + 60o = 180o
=> góc B = 30o
Có CE là phân giác góc ACB (gt)
=> góc ACE = góc ECB = \(\frac{1}{2}\)góc ACB = 30o
=> góc ECB = góc B (= 30o)
=> Tam giác EBC cân tại E
=> EC = EB (Đpcm)
Kẻ AM là trung tuyến tam giác ABC.
Có tam giác ABC vuông tại A
=> AM = \(\frac{1}{2}\)BC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
=> AM = MC = AC (= \(\frac{1}{2}\)BC)
=> Tam giác AMC đều
=> Góc ACB = 60o
Xét tam giác ABC có góc A + góc B + góc ACB = 180o (Định lí tổng 3 góc của 1 tam giác)
=> 90o + góc B + 60o = 180o
=> góc B = 30o
Có CE là phân giác góc ACB (gt)
=> góc ACE = góc ECB = \(\frac{1}{2}\)góc ACB = 30o
=> góc ECB = góc B (= 30o)
=> Tam giác EBC cân tại E
=> EC = EB (Đpcm)
Trước hết bạn cần biết bổ đề sau: " Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30độ bằng nửa cạnh huyền " - phần chứng minh xin nhường lại cho bạn, gợi ý là vẽ thếm trung tuyến ứng với cạnh huyền để chứng minh
Kẻ BH ⊥ AC tại H.
Xét tam giác ABH có góc BHA = 90độ (cách kẻ)
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)
Áp dụng định lý Py-ta-go ta có:
AB² = BH² + AH²
=> BH² = AB² - AH² (2)
Xét tam giác BHC có góc BHC = 90độ (cách kẻ)
=> Áp dụng định lý Py-ta-go ta có:
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)
Thay (1) và (2) vào (3) ta có:
BC² = (AB² - AH²) + AC² - AB.AC + AH²
<=> BC² = AB² - AH² + AC² - AB.AC + AH
<=> BC² = AB² + AC² - AB.AC
Kết luận
k đi
Thử làm coi sao.
Kẻ đường trung tuyến AM.
Vì đây là tam giác vuông nên đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền.
\(\Rightarrow AM=\frac{1}{2}BC\)
\(M\)là trung điểm \(BC\Rightarrow BM=CM=\frac{1}{2}BC\)
Xét \(\Delta ABM\)có: \(AB=BM=AM\)( Cùng \(=\frac{1}{2}BC\))
\(\Rightarrow\Delta ABM\)là tam giác đều
\(\Rightarrow\widehat{B}=60\)độ
Ta có: \(\widehat{B}+\widehat{C}=90\)độ ( cùng phụ \(\widehat{A}\))
\(60+\widehat{C}=90\Rightarrow\widehat{C}=90-60=30\)độ \(\left(đpcm\right)\)
Kẻ phân giác Ax cắt BC tại D
Gọi K,H lần lượt là hình chiếu chủa B,C trên Ax
=> Tam giác KBA vuông tại K có A =30 => BK = AB/2
tam giác HCA vuông tại H có A =30 => CH = AC /2
=> AB+AC = 2( BK +CH) mà BK </ BD ; CH </ CD
=> AB+AC</ 2(BD+CD)
=> AB +AC </ 2 BC
neu B hoac C<A
=>AB hoac AC<BC
=>AC hoac AB> BC
AB+AC<BC [bất đẳng thức trong tam giác]
nếu AB+AC>2BC[ loại vì AC+CB<AB hoac AB+BC<AC trai vs bat dang thuc trong tam giac]
=> AB+AC < hoac bang 2BC
Vay....