K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: D và H đối xứng nhau qua AB(gt)

nên AB là đường trung trực của DH

hay AH=AD(1)

Ta có: H và E đối xứng nhau qua AC(gt)

nên AC là đường trung trực của EH

hay AE=AH(2)

Từ (1) và (2) suy ra AD=AE

hay ΔDAE cân tại A

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. Vì $H, D$ đối xứng nhau qua $AB$ nên $AB$ là đường trung trực của $DH$

$\Rightarrow AD=AH(1)$

Vì $H,E$ đối xứng qua $AC$ là đường trung trực của $HE$

$\Rightarrow AH=AE(2)$

Từ $(1);(2)\Rightarrow AD=AE$ nên tam giác $ADE$ cân tại $A$

b.

Vì $AB$ là trung trực $DH$ nên:

$AD=AH, MD=MH$

Do đó dễ cm $\triangle ADM=\triangle AHM$ (c.c.c)

$\Rightarrow \widehat{MHA}=\widehat{MDA}=\widehat{EDA}(*)$

Tương tự: $\triangle ANH=\triangle ANE(c.c.c)

$\Rightarrow \widehat{NHA}=\widehat{NEA}=\widehat{DEA}(**)$
Tam giác $ADE$ cân tại $A$ nên $\widehat{EDA}=\widehat{DEA}(***)$

Từ $(*); (**); (***)\Rightarrow \widehat{MHA}=\widehat{NHA}$

Do đó $HA$ là phân giác $\widehat{MHN}$

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Làm nốt câu c,d.

c. Sửa thành $BN, CM, AH$ đồng quy

Gọi $T$ là giao $AH, DN$ và $R$ là giao $DN, BC$

Xét tam giác $ADT$ và $NHT$ có:
$\widehat{ATD}=\widehat{NTH}$ (đối đỉnh)

$\widehat{D_2}=\widehat{H_2}=\widehat{H_1}$

$\Rightarrow \triangle ADT\sim \triangle NHT$ (g.g)

$\Rightarrow \frac{AT}{DT}=\frac{NT}{HT}$

$\Rightarrow \triangle ATN\sim \triangle DTH$ (c.g.c)

$\Rightarrow \widehat{N_1}=\widehat{THD}(3)$

Mặt khác:

Vì $\triangle ADT\sim \triangle NHT$ 

$\Rightarrow \widehat{DAT}=\widehat{HNT}=\widehat{HND}$

Mà $\widehat{DAT}+\widehat{DBH}=180^0$ (do $\widehat{ADB}=\widehat{AHB}=90^0$)

$\Rightarrow \widehat{HND}=\widehat{DAT}=180^0-\widehat{DBH}=\widehat{RBD}$

Xét tam giác $RBD$ và $RNH$ có:

$\widehat{R}$ chung

$\widehat{RBD}=\widehat{HND}=\widehat{RNH}$

$\Rightarrow \triangle RBD\sim \triangle RNH$ (g.g)

$\Rightarrow \frac{RB}{RD}=\frac{RN}{RH}$

$\Rightarrow \triangle RDH\sim \triangle RBN$ (c.g.c)

$\Rightarrow \widehat{RHD}=\widehat{RNB}(4)$

Từ $(3);(4)$ suy ra:

$\widehat{N_1}+\widehat{RNB}=\widehat{THD}+\widehat{RHD}$

$\Leftrightarrow \widehat{ANB}=\widehat{AHB}=90^0$

$\Rightarrow BN\perp AC$

Tương tự $CM\perp AB$

Tam giác $ABC$ có $BN\perp AC, CM\perp AB, AH\perp BC$ nên ba đường này đồng quy (3 đường cao trong tam giác)

d. Đã làm ở phần c.

P/s: Bài toán này nếu làm bằng kiến thức lớp 9 thì khá nhẹ nhàng, nhưng dùng kiến thức lớp 8 thì mình thấy hơi dài.

 

1: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

Suy ra: \(AH=AD\left(1\right)\)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: \(AH=AE\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE

Xét ΔADE có AD=AE

nên ΔADE cân tại A

13 tháng 12 2017

fdgdgfssdg

22 tháng 2 2018

Đề bài sai

5 tháng 9 2018

░░█▒▒▒▒░░░░▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒█ ░░░░█▒▒▄▀▀▀▀▀▄▄▒▒▒▒▒▒▒▒▒▄▄▀▀▀▀▀▀▄ ░░▄▀▒▒▒▄█████▄▒█▒▒▒▒▒▒▒█▒▄█████▄▒█ ░█▒▒▒▒▐██▄████▌▒█▒▒▒▒▒█▒▐██▄████▌▒█ ▀▒▒▒▒▒▒▀█████▀▒▒█▒░▄▒▄█▒▒▀█████▀▒▒▒█ ▒▒▐▒▒▒░░░░▒▒▒▒▒█▒░▒▒▀▒▒█▒▒▒▒▒▒▒▒▒▒▒▒█ ▒▌▒▒▒░░░▒▒▒▒▒▄▀▒░▒▄█▄█▄▒▀▄▒▒▒▒▒▒▒▒▒▒▒▌ ▒▌▒▒▒▒░▒▒▒▒▒▒▀▄▒▒█▌▌▌▌▌█▄▀▒▒▒▒▒▒▒▒▒▒▒▐ ▒▐▒▒▒▒▒▒▒▒▒▒▒▒▒▌▒▒▀███▀▒▌▒▒▒▒▒▒▒▒▒▒▒▒▌ ▀▀▄▒▒▒▒▒▒▒▒▒▒▒▌▒▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▒▒█ ▀▄▒▀▄▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▄▄▄▄▒▒▒▒▒▒▄▄▀ ▒▒▀▄▒▀▄▀▀▀▄▀▀▀▀▄▄▄▄▄▄▄▀░░░░▀▀▀▀▀▀ ▒▒▒▒▀▄▐▒▒▒▒▒▒▒▒▒▒▒▒▒▐ ▒█▀▀▄ █▀▀█ █▀▀█ █▀▀█   ▀▀█▀▀ █░░█ █▀▀   ▒█▀▀█ █▀▀█ █▀▀ █▀▀ ▒█░▒█ █▄▄▀ █░░█ █░░█   ░▒█░░ █▀▀█ █▀▀   ▒█▀▀▄ █▄▄█ ▀▀█ ▀▀█ ▒█▄▄▀ ▀░▀▀ ▀▀▀▀ █▀▀▀   ░▒█░░ ▀░░▀ ▀▀▀   ▒█▄▄█ ▀░░▀ ▀▀▀ ▀▀▀ ║████║░░║████║████╠═══╦═════╗ ╚╗██╔╝░░╚╗██╔╩╗██╠╝███║█████║ ░║██║░░░░║██║╔╝██║███╔╣██══╦╝ ░║██║╔══╗║██║║██████═╣║████║ ╔╝██╚╝██╠╝██╚╬═██║███╚╣██══╩╗ ║███████║████║████║███║█████║

5 tháng 9 2018

rap ng bn 4 chan

18 tháng 11 2023

1: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>AH=DE

2: \(\widehat{EDM}=90^0\)

=>\(\widehat{EDH}+\widehat{MDH}=90^0\)

=>\(\widehat{EAH}+\widehat{MDH}=90^0\)

=>\(\widehat{MDH}+\widehat{HAC}=90^0\)

=>\(\widehat{MDH}+\widehat{ABC}=90^0\)

mà \(\widehat{MHD}+\widehat{MBD}=90^0\)

nên \(\widehat{MDH}=\widehat{MHD}\)

=>MD=MH

\(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)

\(\widehat{MHD}+\widehat{MBD}=90^0\)(ΔHDB vuông tại D)

mà \(\widehat{MDH}=\widehat{MHD}\)

nên \(\widehat{MDB}=\widehat{MBD}\)

=>MD=MB

=>MB=MH

=>M là trung điểm của BH

\(\widehat{NED}=90^0\)

=>\(\widehat{NEH}+\widehat{DEH}=90^0\)

=>\(\widehat{NEH}+\widehat{DAH}=90^0\)

mà \(\widehat{DAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{NEH}+\widehat{C}=90^0\)

mà \(\widehat{NHE}+\widehat{C}=90^0\)(ΔHEC vuông tại E)

nên \(\widehat{NEH}=\widehat{NHE}\)

=>NE=NH

\(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)

\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)

mà \(\widehat{NHE}=\widehat{NEH}\)

nên \(\widehat{NEC}=\widehat{NCE}\)

=>NE=NC

mà NH=NE

nên NC=NH

=>N là trung điểm của HC

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath