Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{1}{2}\)
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=2+4=6(cm)Xét ΔABC có
AF là đường phân giác góc ngoài ứng với cạnh BC(gt)
nên \(\dfrac{FB}{FC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài)
\(\Leftrightarrow\dfrac{FC}{FB}=\dfrac{AC}{AB}=2\)
\(\Leftrightarrow\dfrac{FC-FB}{FB}=\dfrac{AC-AB}{AB}\)
\(\Leftrightarrow\dfrac{BC}{FB}=1\)
hay FB=6(cm)
Ta có: FB+BD=FD(B nằm giữa F và D)
nên FD=6+2=8(cm)
Vậy: FD=8cm
a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
mà AD là phân giác
nên AEDF là hình thoi
mà \(\widehat{EAF}=90^0\)
nên AEDF là hình vuông
b: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{5}{7}\)
Do đó: DB=15/7(cm); DC=20/7(cm)
Vẽ hình(tự vẽ nha)
a) Ta có: \(BC^2\)=\(5^2=25\)
\(AB^2+AC^2=3^2+4^2=9+16=25\)
⇒\(AB^2+AC^2=BC^2\)
⇒Δ ABC vuông tại A (theo định lí Py-ta -go đảo)
⇒BA⊥AC
Mà DE//AC(gt);DF//AB(gt)
⇒DE⊥BA;DF⊥AC(t/c)
Xét tứ giác AEDF có \(\widehat{AFD}=90^o\left(DF\perp AC\right)\); \(\widehat{BAC}=90^o\left(BA\perp AC\right);\widehat{AED}=90^{o^{ }}\left(DE\perp BA\right)\);AD là p/g \(\widehat{BAC}\)
⇒Tứ giác AEDF là hình vuông (d/h)
b) Xét ΔABC có AD là tia phân giác \(\widehat{BAC}\),theo t/c ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)⇒\(\dfrac{DC}{AC}=\dfrac{BD}{AB}\)hay\(\dfrac{DC}{4}=\dfrac{BD}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{DC}{4}=\dfrac{BD}{3}\)=\(\dfrac{DC+BD}{4+3}=\dfrac{BC}{7}=\dfrac{5}{7}\)
\(\left\{{}\begin{matrix}DC=4.\dfrac{5}{7}=\dfrac{20}{7}\left(cm\right)\\BD=BC-DC=5-\dfrac{20}{7}=\dfrac{15}{7}\left(cm\right)\end{matrix}\right.\)
Bạn xem lại có phải chép sai đề không?,ở chỗ "tứ giác aebf là hình gì" và chỗ "af/ab+af/ab=1",và câu d có gì đó thiếu thiếu.Mk đã sửa lại câu a,vì như vậy mới ra tứ giác.