K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

a. Xét tam giác ABM:

AM+BM>AB (bđt tam giác)

Mà BM=CM (AM là trung tuyến)

=> AM+CM>AB

b. Ta có: AM+BM>AB (cmt)

=> AM>AB-BM (1)

Xét tam giác ACM: AM+CM>AC (bđt tam giác)

=> AM>AC-CM (2)

Cộng theo vế của (1) với (2), ta có:

2AM>AB-BM+AC-CM

=> \(AM>\dfrac{AB+AC-\left(BM+CM\right)}{2}=\dfrac{AB+AC-BC}{2}\)

=> đpcm.

2 tháng 8 2017

cho hỏi tam giác ABC cân hay thường?

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là phân giác

Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

mà AM là phân giác

nen AEMF là hình thoi

b: Xét ΔABC có ME//AC

nên BE/BA=BM/BC=1/2

=>E là trung điểm của AB

Xét ΔABC có MF//AB

nên CF/CA=CM/CB=1/2

=>F là trung điểm của AC

Xét ΔABC có E,F lần lượtlà trung điểm của AB và AC

nên EF là đường trung bình

=>EF=1/2BC và EF//BC

c: Xét ΔAEM và ΔAFM có

AE=AF

góc EAM=góc FAM

AM chung

Do đó: ΔAEM=ΔAFM

Suy ra: ME=MF

mà AE=AF

nên AM là trung trực của FE

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:

Bạn tự vẽ hình nhé.

a) Ta thấy \(\widehat{MFC}=90^0-\widehat{MAF}(1)\)

VÌ $AM$ là trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM=MC\)

\(\Rightarrow \triangle AMB\) cân tại $M$

\(\Rightarrow \widehat{MBE}=\widehat{MBA}=\widehat{MAB}=90^0-\widehat{MAF}(2)\)

Từ \((1);(2)\Rightarrow \widehat{MFC}=\widehat{MBE}\)

Xét tam giác $MBE$ và $MFC$ có:

\(\left\{\begin{matrix} \widehat{MBE}=\widehat{MFC}\\ \widehat{BME}=\widehat{FMC}(\text{đối đỉnh})\end{matrix}\right.\) \(\Rightarrow \triangle MBE\sim \triangle MFC(g.g)\)

b) Theo phần a thì \(\widehat{MBE}=\widehat{MFC}\Leftrightarrow \widehat{ABC}=\widehat{AFE}\)

Xét tam giác $ABC$ và $AFE$ có:

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{AFE}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle ABC\sim \triangle AFE(g.g)\)

\(\Rightarrow \frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

c)

Do $AH,AM$ là hai đường cao tương ứng đỉnh $A$ của hai tam giác đồng dạng $ABC$ và $AFE$ nên \(\frac{AH}{AM}=\frac{AB}{AF}=\frac{AC}{AE}\)

Do đó \(\frac{S_{ABC}}{S_{AEF}}=\frac{\frac{AB.AC}{2}}{\frac{AE.AF}{2}}=\frac{AB}{AF}.\frac{AC}{AE}=\left(\frac{AH}{AM}\right)^2(*)\)

Xét tam giác $AMI$ và $AHM$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \widehat{AMI}=\widehat{AHM}=90^0\end{matrix}\right.\Rightarrow \triangle AMI\sim \triangle AHM(g.g)\)

\(\Rightarrow \frac{AM}{AI}=\frac{AH}{AM}(**)\)

Từ \((*);(**)\Rightarrow \frac{S_{ABC}}{S_{AEF}}=\left(\frac{AM}{AI}\right)^2\) (đpcm)