Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A N C D M E B P G F
a) Gọi AM , BN , CP là các đường trung tuyến của \(\Delta ABC\) . Ta có GD = AG = 2GM và GD = GM + MD nên GM = MD
\(\Delta BMD=\Delta CMG\left(c.g.c\right)\)
\(\Rightarrow BD=CG=\dfrac{2}{3}CP\) (1)
Ta có \(BG=\dfrac{2}{3}BN\) (2)
\(GD=AG=\dfrac{2}{3}AM\) (3)
Từ (1) , (2) , (3) suy ra các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các đường trung truyến của \(\Delta ABC\)
b) Gọi CE , DF là các đường trung tuyến của \(\Delta BGD\) . Từ đây tự chứng minh \(BM=\dfrac{1}{2}BC;GE=\dfrac{1}{2}AB;DF=AN=\dfrac{1}{2}AC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) gọi AM,BN ,CH lần lượt là trung tuyến của tam giác ABC xuất phát từ các đỉnh A;B;C
Ta có BG=2/3BN( BN LÀ TRUNG TUYẾN CỦA TAM GIÁC ABC)
Ta có AG=2/3AM
=>GM=1/2AG
mà AG = GD
=> GM =MD= 1/2 GD
Xét tam giác GMC và DMB có :
GM=MD(cmt)
góc GMC=DMB (đối đỉnh)
BM=MC(gt)
=> 2 tam giác đó bằng nhau (c-g-c)
=>GC=BD (2-c-t-ứ) mà GC=2/3HC( vì CH là trung tuyến của tam giác ABC )=> BD=2/3CH
Ta có AG=2/3AM( AM là trung tuyến của tam giác ABC)
Mà AG=GD
=> GD=2/3AM
![](https://rs.olm.vn/images/avt/0.png?1311)
Khi đó E là trọng tâm của tam giác ABC (khoảng cách từ đỉnh tới trọng tâm của tam giác bằng 2/3 độ dài đường trung tuyến kẻ từ đỉnh đó).
Chọn đáp án B
![](https://rs.olm.vn/images/avt/0.png?1311)
- Ta có: G là trọng tâm của tam giác
suy ra: MG=1/2AM,suy ra: MG=1/2AG
mà AG=GD suy ra: MG=1/2GD -> MG=MD( điều phải cm)
2. xét tam giác BDM và tam giác CGM
góc GMC=góc DMB (đối đỉnh); GM=MD (cm trên); BM=CM (AM là trung tuyến)
-> tam giác BDM = tam giác CGM(c.g.c)
-> BD=CG (dpcm)
tỉ số giữa AG và AD
\(\dfrac{AG}{AD}=\dfrac{2}{3}\)
bạn tự vẽ hình bài này nhé
Có `G` là trọng tâm `Delta ABC`
`=>AG=2/3 AD(t/c)`
hay `(AG)/(AD)=2/3`