K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

-Xét △ABC có: H∈AC, D∈BC, E∈AB ; AD, BH, CE đồng quy

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\) (định lí Ceva)

\(\Rightarrow\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\Rightarrow\dfrac{HA}{HC}=\dfrac{DB}{DC}\)

\(\Rightarrow\)HD//AB (định lí Ta-let đảo)

17 tháng 4 2022

-Xét △ABC có: E thuộc AB, D thuộc BC, H thuộc AC và AD, BH, CE đồng quy tại I.

\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}.\dfrac{EB}{EA}=1\) (định lí Ceva).

\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}=1\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{DB}{DC}\Rightarrow\)HD//AB.

\(\Rightarrow S_{ABD}=S_{ABH}\Rightarrow S_{ABD}-S_{ABI}=S_{ABH}-S_{ABI}\Rightarrow S_{IBD}=S_{AIH}\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE;AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

ΔAHE vuông tại H nên AH<AE

=>góc AEH<90 độ

=>góc AED>90 độ

=>AE<AD

=>AH<AE<AD

19 tháng 4 2021

19 tháng 4 2021

a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao 

AB^2 + AC^2 = BC^2

=> BC^2 = 36 + 64 = 100 => BC = 10 cm 

Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

mà DC = BC - BD = 10 - BD 

hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm 

=> DC = 10 - BD = 10 - 30/7 = 40/7 cm 

b, Xét tam giác ABC và tam giác AHB ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác AHB ( g.g )