Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Xét △ABC có: H∈AC, D∈BC, E∈AB ; AD, BH, CE đồng quy
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\) (định lí Ceva)
\(\Rightarrow\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\Rightarrow\dfrac{HA}{HC}=\dfrac{DB}{DC}\)
\(\Rightarrow\)HD//AB (định lí Ta-let đảo)
-Xét △ABC có: E thuộc AB, D thuộc BC, H thuộc AC và AD, BH, CE đồng quy tại I.
\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}.\dfrac{EB}{EA}=1\) (định lí Ceva).
\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}=1\)
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{DB}{DC}\Rightarrow\)HD//AB.
\(\Rightarrow S_{ABD}=S_{ABH}\Rightarrow S_{ABD}-S_{ABI}=S_{ABH}-S_{ABI}\Rightarrow S_{IBD}=S_{AIH}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
ΔAHE vuông tại H nên AH<AE
=>góc AEH<90 độ
=>góc AED>90 độ
=>AE<AD
=>AH<AE<AD
a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao
AB^2 + AC^2 = BC^2
=> BC^2 = 36 + 64 = 100 => BC = 10 cm
Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
mà DC = BC - BD = 10 - BD
hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm
=> DC = 10 - BD = 10 - 30/7 = 40/7 cm
b, Xét tam giác ABC và tam giác AHB ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác AHB ( g.g )