Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=BH+CH
=4+6
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot6}=2\sqrt{6}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{4\cdot10}=2\sqrt{10}\left(cm\right)\\AC=\sqrt{6\cdot10}=2\sqrt{15}\left(cm\right)\end{matrix}\right.\)
b: M là trung điểm của AC
=>\(AM=\dfrac{AC}{2}=\sqrt{15}\left(cm\right)\)
Xét ΔAMB vuông tại A có
\(tanAMB=\dfrac{AB}{AM}=\sqrt{\dfrac{2}{3}}\)
=>\(\widehat{AMB}\simeq39^0\)
c: ΔABM vuông tại A có AK là đường cao
nên \(BK\cdot BM=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)
Em ko hiểu lắm ạ :")
Theo quan hệ đường xiên và đường vuông góc thì \(AM\ge AH\)
Dấu "=" xảy ra khi AM trùng với AH
hay tam giác ABC cân tại A.
3 điểm M,B,C thẳng hàng thì tính gì ạ ?
Ke \(MK\perp BC\Rightarrow MK=\frac{AH}{2}=\frac{BM}{2}\) (tinh chat duong trung binh)
Xet tam giac MBK co \(\frac{MK}{MB}=\frac{1}{2}\Rightarrow\widehat{MBK}=\widehat{MBC}=30^0\)
\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)
⇒ AC = \(\dfrac{5}{12}\) .AB
= \(\dfrac{5}{12}.5\)
\(=\dfrac{25}{12}\) (cm)
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
\(=5^2+\left(\dfrac{25}{12}\right)^2\)
= \(\dfrac{4225}{144}\)
⇒ BC = \(\dfrac{65}{12}\) (cm)
AH.BC = AB.AC
⇒ AH = AB . AC : BC
= 5 . \(\dfrac{25}{12}:\dfrac{65}{12}\)
\(=\dfrac{25}{13}\left(cm\right)\)
M là trung điểm của AC
⇒ AM = AC : 2 = \(\dfrac{25}{12}:2\) \(=\dfrac{25}{24}\) (cm)
∆ABM vuông tại A
⇒ BM² = AB² + AM²
= \(5^2+\left(\dfrac{25}{24}\right)^2\)
= \(\dfrac{15025}{576}\)
⇒ BM = \(\dfrac{5\sqrt{601}}{24}\) (cm)