Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BAN TU VE HINH NHA
tu O ke OI vuong goc vs CD \(\Rightarrow CI=ID\)
de dang cm dc AH song song vs IO song song vs KB (cung vuong goc vs CD)
suy ra AHKB la hinh thang
lai co OA=OB \(\Rightarrow IH=IK\)
\(\Rightarrow IH-CI=IK-ID\Rightarrow CH=BK\)
Kẻ \(OM\perp CD\)
Vì AH // BK (cùng vuông góc HK) nên tứ giác AHKB là hình thang.
Hình thang AHKB có:
AO = OB ( bán kính )
OM // AH // BK ( cùng vuông góc HK )
=> OM là đường trung bình của hình thang.
=> MH = MK (1)
Vì OM ⊥ CD nên MC = MD (2)
Từ (1) và (2) suy ra CH = DK (đpcm)
gọi O là tâm đường tròn đường kính AB
Kẻ OE vuông góc vs CD (E thuộc CD)
suy ra E là trung điểm của CD
Mà OE là đường trung bình của hình thang ABKH (đi qua trung điểm một cạnh bên và song song vs cạnh đáy)
suy ra EH=EK mà EC=ED Suy ra đpcm
d) \(\Delta\)HCM vuông tại C; I là trung điểm HM => \(\Delta\)MIC cân tại I => góc ICM = góc IMC (*)
\(\Delta\)OAC cân tại O => OAC = góc OCA (**)
Mặt khác góc BAC = góc BMH ( cùng phụ với góc ABM) (***)
(*)(**)(***) => ICM = góc OCA
=> ICO = OCA + ACI = ICM + ACI = ACM = 90
CM tương tự trên
=> IDO =90
Gọi O' là trung điểm của OI => O' O=O'C=O'I=O'D =O'O/2
=> KL....
Đường thẳng CD ko cắt đường kính AB=>AB//CD(1)
Từ AH vuông góc vs CD, BK vuông góc vs CD(gt)
=>AH//BK(2)
Từ (1) và (2)=>AHKB là hình bình hành
Nên AB=HK(*)
Lấy O' là trung điểm của Hk
=>OO' là đường trung bình của hình thang AHKB
=>OO' //AH//BK=>OO' vuông góc vs CD(*)
Từ (*) và(**)=>CO'-HO"=DO'-KO"
Hay CH=DK(đpcm)
Gọi I là trung điểm của CD; CD là dây cung của (O) => OI vuông góc với CD
Mà \(AH\perp CD;BK\perp CD\) => OI // AH // BK
Hình thang AHKB có OI // AH // BK; O là trung điểm của AB => I là trung điểm HK => IH = IK
Mà IC = ID (Vì I là trung điểm của CD)
=> IH - IC = IK - ID => CH = DK
=> ĐPCM
a: gó ACB=1/2*180=90 độ
=>BC vuông góc MA
góc ADB=1/2*180=90 độ
=>AD vuông góc MB
góc MCN+góc MDN=180 độ
=>MCND nội tiếp
b: Xet ΔMAB có
AD,BC là đường cao
AD cắt CB tại N
=>N là trực tâm
=>M,N,H thẳng hàng
c: góc ODI=góc ODN+góc IDN
=góc IND+góc OAD
=góc OAD+góc HNA=90 độ
=>OD là tiếp tuyến của (I)
a)Tam giác BNC vuông tại N => B,N,C cùng thuộc đường tròn đường kính BC (1)
Tam giác BMC vuông tại M => B,M,C cùng thuộc đường tròn đường kính BC (2)
Từ (1) và (2) => B,N,M,C cùng thuộc đường tròn đường kính BC
b) Vì M , N thuộc đường tròn => MN là dây ( ko đi qua tâm )
=> MN < BC ( quan hệ đường kính và dây )