K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 3 2022
-△ABC có: E,F là trung điểm AC,BC \(\Rightarrow\)EF là đường trung bình của △ABC.
\(\Rightarrow EF=\dfrac{1}{2}BC\)
-\(\widehat{HEF}=90^0-\widehat{CEF}=90^0-\widehat{BAD}=\widehat{ABD}\)
-\(\widehat{HFE}=90^0-\widehat{EFC}=90^0-\widehat{ABK}=\widehat{BAK}\)
\(\Rightarrow\)△ABG∼△FEH (g-g)
\(\Rightarrow\dfrac{AB}{FE}=\dfrac{AG}{FH}=\dfrac{BG}{HE}=2\) (tỉ số đồng dạng)
\(\Rightarrow BG=2HE;AG=2HF\)
27 tháng 1 2020
Sửa lại đề bài nhé :
cho tam giác ABC có đường cao AK và BD cắt nhau tại G, vẽ các đường trung trực HE, HF của các cạnh AC, BC. . Chứng minh: BG = 2HE và AG = 2HF
Giải :
Tham khảo tại link : https://olm.vn/hoi-dap/detail/14638629410.html
a) AIBG là hình bình hành (có các cặp cạnh đối song song)
=> BG = AI
b) Lấy T là trung điểm của CG. Vì F là trung điểm của BC => FT là đườn trung bình của tam giác CBG => FT // BG, FT = 1/2 BG.
Mà BG vuông góc với AC => FT vuông góc với AC => FT // HE (1) (vì cùng vuông góc với AC)
Tương tự, ET là đường trung bình của tam giác CGA => ET // AG. Mà AG vuông góc với BC => ET vuông góc với BC => ET // HF (2) (vì cùng vuông góc với BC)
Từ (1) và (2) suy ra HFTE là hình bình hành => HE = FT. Mà FT = 1/2 BG => HE = 1/2 BG (dpcm)
c) Lấy M trung điểm của AB, do các đường trung trực đồng qui => MH vuông góc với AB.
Lấy N là trung điểm của BG. Chứng minh tương tự câu b)
A B C H F E I M N G
a)
Ta có AG // BI (cùng vuông góc với BC)
BG // AI (cùng vuông góc với AC)
=>Tứ giác AIBG là hình bình hành => BG = AI
b)c) C/m Tương tự nhau
Chứng minh ý c)
Lấy M: N là trung điểm của AB; BG => HM là đường trung trực của AB
+) Xét tam giác BGC có: F; N là trung điểm của BC; BG => FN là đường trung bình của tam giác => FN // CG mà CG // HM (do cùng vuông góc với AB) => FN // HM
+) Xét tam giác ABG có: M; N là trung điểm của AB; BG => MN là đường trung bình của tam giác => MN // AG ; AG // HF => MN // HF
=> Tứ giác HFNM là hình bình hành => MN = HF mà MN = AG/ 2 (do MN là đuơng trung bình của tam giác ABG)
nên HF = AG /2 hay AG = 2.HF