K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

Ta có: ΔBAD cân tại B

mà BH là đường cao

nên BH là tia phân giác của góc ABD

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: góc MAH=góc BAH

góc BAH=góc MHA

=>góc MAH=góc MHA

=>ΔMAH cân tại M

c: Xét ΔACB có

H la trung điểm của CB

HM//AB

=>M là trung điểm của AC

=>B,G,M thẳng hàng

28 tháng 4 2016

a) Vì trong tg cân, đường cao cũng là đường trung tuyến, trung trực, đường phân giác nên đường cao AH chính là đường trung tuyến ứng với cạnh BC trong tg ABC

\(\Rightarrow\) HB = HC = 1/2.BC = 1/2.6 = 3 (cm)

\(\Rightarrow\) \(AH^2=BA^2-HB^2=5^2-3^2=16\)

\(\Rightarrow\) AH = 4(cm)

b) Vì AH là đường trung tuyến ứng với cạnh BC của tg ABC nên trọng tâm G của tg ABC cũng thuộc đường cao AH

\(\Rightarrow\) A,G,H thẳng hàng

16 tháng 2 2021

a, - Xét tam giác ABC cân tại A có : AH là đường cao .

=> AH là đường trung trực .

=> H là trung điểm của BC .

=> BH = CH .

b, Đề là lạ :vvv

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Sửa đề: Chứng minh NA=NC

Ta có: đường trung trực của AH cắt AH tại M và cắt AC tại N(gt)

nên NM là đường trung trực của AH

\(\Leftrightarrow NM\perp AH\) tại trung điểm của AH

mà NM cắt AH tại M(gt)

nên M là trung điểm của AH

Ta có: NM\(\perp\)AH(cmt)

BC\(\perp\)AH(gt)

Do đó: NM//BC(Định lí 1 từ vuông góc tới song song)

hay NM//HC

Xét ΔAHC có 

M là trung điểm của AH(cmt)

MN//HC(cmt)

Do đó: N là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

hay NA=NC(đpcm)

20 tháng 4 2016

xét tam giác abh và tam giác ach

có       góc h1=góc h2

           ab=ac

            ah chung

=>tam giác abh=tam giác ach(ch.cgv)

=>bh=6cm:2=3cm

áp dụng định lý py-ta-go vào tam giác abh

ta có ab^2=ah^2+bh^2

=>ah^2=ab^2-bh^2

=>ah=4cm

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=CH^2+AH^2\)

hay \(CH^2=AC^2-AH^2\)

Ta có: \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

nên \(AB^2+CH^2=AC^2+BH^2\)(đpcm)