K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

A B C H

Tam giác AHC vuông tại H ( do AH \(⊥\)BC )

=> AH2 + CH2 = AC2 ( định lý Pytago )

=> 42 + CH2 = 52

=> 9 + CH2 = 25

=> CH2 = 16

=> CH = 4 cm ( CH > 0 ) 

Ta có: CH + BH = BC

=> 4 + BH = 9

=> BH = 5 cm

24 tháng 7 2017

Tam giác AHC vuông tại H ( do AH\(⊥\)BC )

=> AH2 + CH2 = AC2 ( định lý Pytago ) 

=> 42 + CH2 = 52

=> 16 + CH2 = 25

=> CH2 = 9

=> CH = 3 cm ( CH > 0 )

Ta có: CH + BH = BC

=> 3 + BH = 9

=> BH = 6 cm

Tam giác ABH vuông tại H ( do AH\(⊥\)BC )

=> AH2 + BH2 = AB2 ( định lý Pytago ) 

=> 42 + 62 = AB2

=> 16 + 36 = AB2

=> AB2 = 52

=> AB = \(\sqrt{52}\)cm ( AB > 0 )

Xin lỗi bạn nhé, bài trên mình chưa để ý đề bài và làm sai, mình làm lại bài này, bạn vẫn dùng hình ở trên nha!

=> AB2 = 

20 tháng 5 2020

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:

AH²+BH²=AB²

AH²=AB²−BH²

AH²=52−32

⇒AH²=16

⇒AH=4(cm)

Ta có:

BH+HC=BC

⇒HC=BC−BH

⇒HC=8−3

⇒HC=5(cm)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:

AH²+HC²=AC²

42+52=AC²

⇒AC²=41

⇒AC=√41(cm)

Vậy HC = 5 cm, AC = √41 cm

#Tuyên#

25 tháng 2 2021

a/

∆ABC vuông tại A, AH, vuông góc BC

=> AB.AH = HB.AC

=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16

 

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15(cm)

Vậy: AB=15cm

1 tháng 5 2020

Hình bạn tự vẽ nhé 

AH vuông góc với BC => Tam giác AHB và tam giác AHC vuông tại H

Áp dụng định lí Pytago cho tam giác vuông AHB ta được :

AB2 = AH2 + BH2

BH = \(\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3cm\)

Áp dụng định lí Pytago cho tam giác vuông AHC ta được :

AC2 = AH2 + HC2

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4^2+12^2}=12,649...\approx12,65cm\)

H thuộc BC => BC = BH + HC = 3 + 12 = 15cm

Chu vi hình tam giác ABC = AB + AC + BC = 5 + 12, 65 + 15 = 32, 65cm

#Sai thì bỏ qua nhé xD

1 tháng 5 2020

AD định lý Pytago  vào trong tam giác ABH vuông tại H ta có: BH= AB2 - AH2=25-16=9

Suy ra BH=3(cm)

Ta có BC=BH+CH =12+3=15(cm)

AD định lý Pytago vào trong tam giác AHC vuông tại H ta có:AC2=AH2+HC2=42+122=160

Suy ra:AC=12,65(cm;tương đương)

Vậy chu vi tam giác ABC là: 5+15+12.65=32.65(cm)

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

26 tháng 4 2016

GIÚP MÌNH VỚI MỌI NGƯỜI ƠI. GIẢI CHI TIẾT HỘ MÌNH NHÉ! CẢM ƠN NHIỀU.

30 tháng 4 2020

87676ujgfszer546l5uy

30 tháng 4 2020

Vẽ hình ra thì nó " siêu to khổng lồ " lắm :)

Ta có : BC = BH + HC = 9 + 16 = 25cm

Áp dụng định lí Pytago cho tam giác vuông ABC có :

BC2 = AB2 + AC2 

AB = \(\sqrt{25^2-20^2}=15cm\)

Áp dụng định lí Pytago cho tam giác vuông ABH có :

AB2 = BH2 + AH2

AH = \(\sqrt{15^2-9^2}=12cm\)

Vậy AB = 15cm , AH = 12cm

17 tháng 7 2016

a)ta co : AB^2  + AC^2 = 20^2 +15^2 = 400 + 225 = 625 (cm)

BC = 25^2 = 625 (cm)

=> điều phải chứng minh

b) ta co : HC^2+HA^2 =AC^2

CH^2 = 15^2-12^2= 81cm

=> CH = 9cm

Lai co : 

AH^2+BH^ = AB^2

12^2+BH^2 =20^2

144 + BH^2 = 400

BH^2 =256

=> BH =16cm