K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 8 2018
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{a^2}{ab+ac-a^2}+...\)áp dụng svac sơ ta có
>= \(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)-a^2-b^2-c^2}\)vì a^2+b^2+c^2>=ab+bc+ac và 3(ab+bc+ac)<=(a+b+c)^2 => dpcm
13 tháng 12 2017
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
LN
31 tháng 7 2019
Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=....+2\frac{a+b+c}{abc}=.....\)
ta co \(a^3+b^3+c^3=3abc\)
=>\(a^3+b^3+c^3-3abc=0\)
=>(a+b+c)(\(a^2+b^2+c^2-ab-bc-ac\))=0(cach phan h da thuc thanh nhan tu ban tu lam nhe or tra mang cung co )
Ma a+b+c khac 0
=> \(a^2+b^2+c^2-ab-bc-ac=0\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
=> Tam giac ABC la tam giac deu
=> goc A=goc B =goc C=60 do
c mũ 3 à bạn