K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a)

– Tọa độ trọng tâm G của tam giác ABC là:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

– Tọa độ trực tâm H của tam giác ABC:

Cách 1:

+ Phương trình đường cao BD:

BD ⊥ AC ⇒ Đường thẳng BD nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

BD đi qua B(2; 7)

⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0

+ Phương trình đường cao CE:

CE ⊥ AB ⇒ Đường thẳng CE nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

CE đi qua C(–3; –8)

⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.

Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi H(x, y) là trực tâm tam giác ABC

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

Khi đó TA = TB = TC = R.

+ TA = TB ⇒ AT2 = BT2

⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2

⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49

⇒ 4x – 8y = –28

⇒ x – 2y = –7 (1)

+ TB = TC ⇒ TB2 = TC2

⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2

⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64

⇒ 10x + 30y = –20

⇒ x + 3y = –2 (2)

Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ T, H, G thẳng hàng.

c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)

Bán kính đường tròn ngoại tiếp ΔABC:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình đường tròn ngoại tiếp tam giác ABC:

(x + 5)2 + (y – 1)2 = 85

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
18 tháng 11 2018

Chọn D.

Gọi O(x0; y0)  là tâm đường tròn ngoại tiếp tam giác ABC suy ra:

OA= OB = OC nên 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 49\).

b) Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}}  = 5\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)

c) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( { - 2;1} \right)\)

Bán kính đường tròn là: \[R = IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( { - 3 - 1} \right)}^2}}  = \sqrt {17} \]

Phương trình đường tròn là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 17\)

d) Bán kính đường tròn là: \(R = \frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = 2\sqrt 5 \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 20\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có: \(\overrightarrow {BC}  = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}}  = (4;3)\)

PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}}  = (4;3)\) làm VTPT là:

\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)

b) Ta có: \(\overrightarrow {BC}  = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}}  = 5\)

\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)

c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:

\({(x + 1)^2} + {(y - 3)^2} = 1\)

29 tháng 12 2021

Chọn B

3 tháng 8 2016

gọi K1 là giao điểm của AK với BC. Đầu tiên e chứng minh I là trực tâm của Tam Giác AK1B.

chứng minh tam giác AK1B cân tại K1, rồi suy ra K1M vuông góc vowis AB, suy ra I là trực tâm. rồi e làm như bình thường

a: \(\overrightarrow{AB}=\left(-3;4\right)\)

\(\overrightarrow{AC}=\left(8;6\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A 

c: Tọa độ trọng tâm G là:

\(\left\{{}\begin{matrix}x_G=\dfrac{1-2+9}{3}=\dfrac{8}{3}\\y_G=\dfrac{2+6+8}{3}=\dfrac{16}{3}\end{matrix}\right.\)

13 tháng 1 2022

hảo copy :V