Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-b^3-c^3=3abc\)
\(\Rightarrow a^3-b^3-c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Mà \(a+b+c\ne0\) (độ dài 3 cạnh của 1 tam giác)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Do đó tam giác ABC là tam giác đều
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a^2+b^2+c^2 -ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
Lời giải:
$a^3+b^3+c^3=3abc$
$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$
$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.
$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.
$\Rightarrow$ để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
$\Rightarrow ABC$ là tam giác đều.
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
Đẳng thức quen thuộc: \(a^3+b^3+c^3=3abc\Rightarrow\left[{}\begin{matrix}a=b=c\\a+b+c=0\end{matrix}\right.\)
Do \(a;b;c\) là 3 cạnh của tam giác nên \(a;b;c>0\Rightarrow a+b+c>0\)
Ta có:
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\) (do a+b+c>0)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Vậy ABC là tam giác đều
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
Áp dụng bất đẳng thức cosi ta được
\(a^3+b^3+c^3\ge3abc\)
Dấu = xảy ra khi a = b = c
Hay tam giác ABC đều
=> Góc ABC = 60°