Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A vậy bán kính đường tròn tâm O ngoại tiếp ABC là 5/2 = 2,5
vậy A,B,C đều nẳm trong (O,3) hay x =0
1) Xét (O) có
ΔDAB nội tiếp đường tròn (O)(Vì D,A,B∈(O))
mà AB là đường kính của (O)(gt)
nên ΔDAB vuông tại D(Định lí)
⇒BD⊥AD tại D
hay BD⊥AC
Xét (O) có
ΔEAB nội tiếp đường tròn(E,A,B∈(O))
mà AB là đường kính(gt)
nên ΔEAB vuông tại E(Định lí)
⇒AE⊥EB tại E
hay AE⊥BC tại E
Xét ΔCAB có
BD là đường cao ứng với cạnh AC(cmt)
AE là đường cao ứng với cạnh BC(cmt)
BD\(\cap\)AE={H}
Do đó: H là trực tâm của ΔCAB(Tính chất ba đường cao của tam giác)
⇔CH là đường cao ứng với cạnh AB
hay CH⊥AB(đpcm)
Tam giác ABC vuông tại A (vì 3 cạnh nghiệm đúng Pytago) nên tam giác ABC nội tiếp trong đường tròn tâm O là trung điểm đường kính BC. MO là bàn kính qua điểm chính giửa cung AC nên qua trung điểm dây BC Vậy I trung điểm AC, nên OI là đường trung bình của tam giác BAC nên OI = AB/2 = 8/2 = 4