Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hai Nguyen Lam - Toán lớp 9 - Học toán với OnlineMath Bạn tham khảo bài làm ở link này nhé!
a) +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.
Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB
Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF
Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE
=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)
Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF
=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)
Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF
Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)
+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450
Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)
=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).
b) Xét tứ giác DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)
hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).
câu a
Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A.
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1)
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2)
Từ (1) và (2) => đpcm
mấy câu còn lại bó tay
a: Xét tứ giác BCDE có \(\widehat{BCD}+\widehat{BED}=180^0\)
nên BCDE là tứ giác nội tiếp
b: Xét tứ giác AECF có \(\widehat{ACF}=\widehat{FEA}=90^0\)
nên AECF là tứ giác nội tiếp
=>\(\widehat{AFE}=\widehat{ACE}\)
a: góc ACB=1/2*sđ cung AB=90 độ
góc DCB+góc DEB=180 độ
=>DEBC nội tiếp
góc AEF=góc ACF=90 độ
=>AECF nội tiếp
b: AECF nội tiếp
=>góc AFE=góc ACE
Em tự vẽ hình nhé. Gọi \(H\) là trực tâm tam giác \(ABC\), suy ra \(H\) là điểm cố định. Xét hai tam giác \(HBC\) và \(KED\) có các cặp cạnh tương ứng song song và có \(DE=BC\) (do \(BCDE\) là hình thoi). Vậy \(\Delta HBC=\Delta KED\) (g.c.g). Suy ra \(HC=KD.\) Mà \(HC\parallel KD\) do cùng vuông góc với \(AB\). Vậy \(HK=CD.\) Mà \(BCDE\) là hình thoi nên tất cả các cạnh phải bằng nhau. Suy ra \(CD=BC=R\), vậy \(HK=R.\) Do đó điểm \(K\) nằm trên đường tròn tâm \(H\), bán kính \(R\) cố định.