Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi G là trọng tâm \(\Delta ABC\), trung tuyến BE cắt A'C tại E'.
- Gọi trung điểm B'C' là D'. BE và D'C là đường trung bình của \(\Delta CAB'\)và \(\Delta C'AB'\)
=> BE // D'C và BE = D'C
Trung tuyến AD là đường trung bình của \(\Delta BCA'\Rightarrow GE'=BG=\frac{2}{3}\cdot BE=\frac{2}{3}\cdot D'C\)
Gọi G' là giao của A'D' và BE' ta có:
Áp dụng định lí Talet:
\(\frac{G'E'}{D'C}=\frac{A'E'}{A'C}=\frac{AG}{AD}=\frac{2}{3}\) (AD // A'C do là đường trung bình của \(\Delta BA'C\))
\(\Rightarrow G'E'=\frac{2}{3}\cdot D'C\)
=> G'E' = GE'.
Do G và G' cùng nằm trên BE' và G, G' nằm cùng phía so với E' nên G và G' trùng nhau.
Như vậy trung tuyến A'D' đi qua G, tương tự trung tuyến B'M' cũng đi qua G
=> G là trọng tâm của \(\Delta A'B'C'\)
"Nếu G là trọng tâm \(\Delta ABC\) thì vtGA + vtGB + vtGC = vt0"
Gọi giao của AG và BC là D. Trên AD kéo dài lấy E sao cho
DE = DG => GE = GA => vtGE = - vtGA.
Do GE và BC cắt nhau tại trung điểm D của chúng nên BGCE là hình bình hành
=> vtGB + vtGC = vtGE = -vtGA => vtGA + vtGB + vtGC = vt0
Gọi G là trọng tâm ABC, G' là trọng tâm \(\Delta A'B'C'\)
=> vtGA + vtGB + vtGC = vt0, vtG'A' + vtG'B' + vtG'C' = vt0
=> vt0 = (vtG'G + vtGA + vtAA') + (vtG'G + vtGB + vtBB') + (vtG'G + vtGC + vtCC')
=3vtG'G + (vtGA + vtGB + vtGC) + (vtBA + vtCB + vtAC)
=3vtG'G + vt0 + (vtBA + vtAC + vtCB) = 3vtG'G + vt0
=> vtG'G = vt0
=> G' trùng với G
Câu hỏi của Hoa Thân - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.