K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2022

\(AM=AB+BM=13\left(cm\right)\)

\(AN=AC+CN=16\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\Rightarrow sinA=\dfrac{2S_{ABC}}{AB.AC}=\dfrac{3}{4}\)

\(\Rightarrow S_{AMN}=\dfrac{1}{2}AM.AN.sinA=\dfrac{1}{2}.13.16.\dfrac{3}{4}=...\)

23 tháng 12 2023

72 cm2 nhé ( ko chắc lắm)

 

27 tháng 6 2023

Gọi H là giao điểm của BM và CN. Ta có:

Diện tích tam giác ABC = 1/2 * AB * AC = 1/2 * 8 cm * 12 cm = 48 cm^2

Theo định lí Menelaus, ta có: 

(BH/HA) * (AN/NC) * (CM/MB) = 1

Thay giá trị vào ta được: 

(BH/HA) * (4/8) * (5/7) = 1

Suy ra: BH/HA = 14/15

Do đó, AH = AB - BH = 8 cm - (14/15)*8 cm = 8/15 cm

Tương tự, ta có: CH = 12/15 cm

Áp dụng công thức diện tích tam giác bằng nửa tích chất của đường cao, ta có:

Diện tích tam giác AMN = 1/2 * AM * NH = 1/2 * (AB - BM) * AH = 1/2 * (8 cm - 5 cm) * 8/15 cm = 8/15 cm^2

Vậy diện tích hình tam giác AMN là 8/15 cm^2.

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
12 tháng 11 2023

Xét ΔABC có

\(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)

=>\(\dfrac{8^2+6^2-AB^2}{2\cdot6\cdot8}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(100-AB^2=48\sqrt{3}\)

=>\(AB=\sqrt{100-48\sqrt{3}}\simeq4,11\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinC\)

\(=\dfrac{1}{2}\cdot6\cdot8\cdot sin30=3\cdot8\cdot\dfrac{1}{2}=3\cdot4=12\)

 

12 tháng 11 2023

 

\(AB=\sqrt{AC^2+BC^2-2.AC.BC.cosC}\)

\(AB=4,11\)

\(S_{ABC}=\dfrac{1}{2}. AC.BC.sinC\)

\(S_{ABC}=\dfrac{1}{2}. 8.6.sin 30^o\)

\(S_{ABC}=12\)

 

 

 

 

30 tháng 10 2023

AM=2/3AB

=>BM=1/3AB

=>\(\dfrac{S_{BMC}}{S_{BAC}}=\dfrac{1}{3}\)

=>\(S_{BAC}=3\cdot S_{BMC}=12\sqrt{3}\)

\(\Leftrightarrow\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=12\sqrt{3}\)

=>\(\dfrac{1}{2}\cdot8\cdot AB\cdot sin120=12\sqrt{3}\)

=>\(AB\cdot2\sqrt{3}=12\sqrt{3}\)

=>AB=6

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đặt độ dài cạnh AB là x (\(x > 0\))

Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)

Áp dụng định lý pitago trong tam giác vuông ta có

\(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}}  = \sqrt {2{x^2} + 4x + 4} \)

b) Chu vi của tam giác là \(C = AB + AC + BC\)

\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4}  = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)

Theo giả thiết ta có

\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4}  = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4}  = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)

\( \Rightarrow x = 6\) hoặc \(x = 40\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4}  = 22 - 2x\) ta thấy chỉ có  \(x = 6\) thỏa mãn phương trình

Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)

19 tháng 10 2023

Ko biết

 

28 tháng 2 2018

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

a) Do tam giác ABC là tam giác đều nên Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10 .

Theo định lý côsin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lý sin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

c) Ta có: BM + MC = BC nên MC = BC – BM = 6 - 2 = 4 cm.

Gọi D là trung điểm AM.

Áp dụng công thức độ dài đường trung tuyến trong tam giác ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10