Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Vì \(\dfrac{AE}{EC}=\dfrac{2}{1}\) nên \(EC=\dfrac{AE}{2}\)
Mà \(AE+EC=AC\) nên \(AE+\dfrac{AE}{2}=AC\)
\(\Rightarrow AE\times\left(1+\dfrac{1}{2}\right)=AC\)
\(\Rightarrow AE\times\left(\dfrac{2}{2}+\dfrac{1}{2}\right)=AC\)
\(\Rightarrow AE\times\dfrac{3}{2}=AC\)
\(\Rightarrow AE=\dfrac{2}{3}\times AC\)
\(\dfrac{S_{ADE}}{S_{ADC}}=\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}\times AC}{AC}=\dfrac{2}{3}\)
-Vì D là trung điểm của canh AB nên \(AD=\dfrac{AB}{2}\)
\(\dfrac{S_{ADC}}{S_{ABC}}=\dfrac{AD}{AB}=\dfrac{\dfrac{AB}{2}}{AB}=\dfrac{\dfrac{1}{2}}{1}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{S_{ADC}}{S_{ABC}}\times\dfrac{S_{ADE}}{S_{ADC}}=\dfrac{1}{2}\times\dfrac{2}{3}\)
\(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{3}\)
\(\Rightarrow S_{ADE}=\dfrac{S_{ABC}}{3}=\dfrac{180}{3}=60\left(cm^2\right)\)
ta gọi diện tích = S
theo đề ra ta có S(ADE) = EH x 1,8 : 2 =2,4 cm2
từ đó suy ra EH = 2,4 x 2: 1,8 <=> 2,6 cm ( lưu ý <=> nghĩa là tương đương kết quả chứ ko thể đúng kết quả)
ta lại có AE = \(\frac{2}{3}\) AC suy ra S(AEB) = \(\frac{2}{3}\)S(ABC)
vì diện tích hai hình này có cùng độ cao hạ từ B xuống AC và đáy AE = \(\frac{2}{3}\)đáyAC ( dựa vào tích chất cạnh nào cũng làm được đáy của hình tam giác)
suy ra S (AEB) = 10 x\(\frac{2}{3}\)<=> 6,6 cm2( dấu <=> biểu thị kết quả tương đương chứ ko đúng kết quả đc)
mà S(AEB) = EH x AB suy ra EH x AB = 6,6 cm2
suy ra 2,6 x AB = 6,6 cm2
suy ra AB = 6,6 : 2,6 <=> 2,6 cm (dấu <=> biểu thị kết quả tương đương chứ ko đúng kết quả)
vậy AB <=> 2,6 cm
(lưu ý lần sau ra đề nhớ chọn đề đẹp tí chọn đề lẻ quá)
bạn ra đề lẻ quá nên chia nó ko ra kết quả đúng chỉ có kết quả tương đương thui
Do AE gấp đôi EC nên suy ra EC = \(\dfrac{1}{3}\) AC. Vậy chiều cao của ADE sẽ = \(\dfrac{2}{3}\) chiều cao của tam giác ABC do được hạ từ E xuống đáy AD. Cạnh AD = DB = \(\dfrac{1}{2}\) AB. Diện tích tam giác ADE là:
180 : 3 x 2 : 2 = 60 (cm2)
Đáp số: 60cm2
Kẻ hình hơi xấu mong bạn thông cảm-
\(AD=\frac{1}{3}\times CD\Rightarrow S_{ABF}=\frac{1}{3}\times S_{BFC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEF}=\frac{1}{3}\times S_{ABF}\)
\(\Rightarrow S_{BEF}=\frac{1}{3}\times\frac{1}{3}\times S_{BFC}=\frac{1}{9}\times S_{BFC}\Rightarrow S_{BEF}=\frac{1}{10}\times S_{BEC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEC}=\frac{1}{3}\times S_{ABC}\)
\(\Rightarrow S_{BEF}=\frac{1}{10}\times\frac{1}{3}\times S_{ABC}=\frac{1}{30}\times S_{ABC}\)
\(\Rightarrow S_{BAC}=30\times S_{BEF}=5400\left(cm^2\right)\)