K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
12 tháng 9 2018
Lời giải:
Xét tam giác $ABM$ có $E,I,D$ thẳng hàng, áp dụng định lý Menelaus ta có:
\(\frac{AE}{EB}.\frac{IB}{IM}.\frac{DM}{DA}=1\Rightarrow \frac{AE}{EB}.=\frac{DA}{DM}\) (do \(IB=IM\) )
Xét tam giác $ACM$ và $F,K, D$ thẳng hàng, áp dụng định lý Menelaus có:
\(\frac{AF}{CF}.\frac{KC}{KM}.\frac{DM}{DA}=1\Rightarrow \frac{AF}{CF}=\frac{DA}{DM}\) (do $KC=KM$)
Do đó: \(\frac{AE}{EB}=\frac{AF}{CF}\Rightarrow EF\parallel BC(1)\) theo định lý Ta-let đảo
Mặt khác xét tam giác $MBC$ có \(\frac{MI}{IB}=\frac{MK}{KC}=1\Rightarrow IK\parallel BC(2)\) theo định lý Talet đảo
Từ \((1);(2)\Rightarrow EF\parallel IK\) (đpcm)