K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

Xét tam giác $ABM$ có $E,I,D$ thẳng hàng, áp dụng định lý Menelaus ta có:

\(\frac{AE}{EB}.\frac{IB}{IM}.\frac{DM}{DA}=1\Rightarrow \frac{AE}{EB}.=\frac{DA}{DM}\) (do \(IB=IM\) )

Xét tam giác $ACM$ và $F,K, D$ thẳng hàng, áp dụng định lý Menelaus có:

\(\frac{AF}{CF}.\frac{KC}{KM}.\frac{DM}{DA}=1\Rightarrow \frac{AF}{CF}=\frac{DA}{DM}\) (do $KC=KM$)

Do đó: \(\frac{AE}{EB}=\frac{AF}{CF}\Rightarrow EF\parallel BC(1)\) theo định lý Ta-let đảo

Mặt khác xét tam giác $MBC$ có \(\frac{MI}{IB}=\frac{MK}{KC}=1\Rightarrow IK\parallel BC(2)\) theo định lý Talet đảo

Từ \((1);(2)\Rightarrow EF\parallel IK\) (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Hình vẽ:

Violympic toán 9

5 tháng 12 2016

nhanh hộ cái nha sáng mai cần rùi
khocroikhocroikhocroi

 

5 tháng 12 2016

chờ mk thử làm đã

 

8 tháng 10 2017

a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:

AH^2=BH*HC

hay AH^2=4*9

AH^2=36

=>AH=6cm

ADHE có gócD=gócA=gócE=90độ

=>ADHE là hình chữ nhật

=>AH=DE=6cm (2 đường chéo của hcn)