K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 10 2019

Qua I kẻ đường thẳng song song AC cắt BC tại M

\(\Rightarrow M\) là trung điểm BC \(\Rightarrow M\) cố định

Tam giác BMI vuông tại I

\(\Rightarrow\) Tập hợp I là đường tròn đường kính BM

29 tháng 7 2019

Cần phần đảo với phần giới hạn (nếu có) thôi nha mọi người, em làm được phần thuận rồi.

29 tháng 7 2019

A B C H I M

Thuận: Lấy M là trung điểm BC. Khi đó IM là đường trung bình của \(\Delta\)BHC => IM // HC

Vì HC vuông góc BH nên IM vuông góc BH hay ^BIM = 900 => I thuộc đường tròn (MB)

M là trung điểm đoạn BC cố định => BM cố định => I di chuyển trên (MB) cố định.

Đảo: M là trung điểm BC, đường tròn (BM) cắt BH tại I. Có ngay MI // CH

Xét \(\Delta\)CBH có: M là trung điểm BC, MI // HC, I thuộc BH => I là trung điểm BH.

Giới hạn: Xét A không trùng với B,C. Theo chứng minh phần thuận thì I nằm trên (BM)

Xét A trùng B: Khi đó AC trùng BC. Mà BH vuông góc AC tại H nên H trùng B => I trùng B

Xét A trùng C: Suy ra BH trùng BC. Khi đó trung điểm I của BH trùng với M

Vậy điểm I di động trên cả đường tròn đường kính BM.

23 tháng 12 2017

a) Hai đường thẳng song song với đường thẳng a và cách đường thẳng a một khoảng là 2cm.

b) Đường tròn O B C 2  với O là trung điểm của BC

c) Đường thẳng trung trực của đoạn BC trừ trung điểm BC.

27 tháng 9 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [C, E] Đoạn thẳng m: Đoạn thẳng [D, A] Đoạn thẳng n: Đoạn thẳng [E, A] Đoạn thẳng t: Đoạn thẳng [I, K] Đoạn thẳng a: Đoạn thẳng [E, K] Đoạn thẳng b: Đoạn thẳng [A, H] Đoạn thẳng e: Đoạn thẳng [D, I] Đoạn thẳng f_1: Đoạn thẳng [D, E] Đoạn thẳng g_1: Đoạn thẳng [B, J] Đoạn thẳng h_1: Đoạn thẳng [C, J] Đoạn thẳng j_1: Đoạn thẳng [M, J] B = (-14.59, -7.49) B = (-14.59, -7.49) B = (-14.59, -7.49) C = (5.39, -7.29) C = (5.39, -7.29) C = (5.39, -7.29) A = (-7.4, 13.59) A = (-7.4, 13.59) A = (-7.4, 13.59) Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm E: Giao điểm đường của d, j_2 Điểm E: Giao điểm đường của d, j_2 Điểm E: Giao điểm đường của d, j_2 Điểm I: Giao điểm đường của p, q Điểm I: Giao điểm đường của p, q Điểm I: Giao điểm đường của p, q Điểm H: Giao điểm đường của p, r Điểm H: Giao điểm đường của p, r Điểm H: Giao điểm đường của p, r Điểm K: Giao điểm đường của p, s Điểm K: Giao điểm đường của p, s Điểm K: Giao điểm đường của p, s Điểm J: Điểm trên f_1 Điểm J: Điểm trên f_1 Điểm J: Điểm trên f_1 Điểm G: Trung điểm của D, E Điểm G: Trung điểm của D, E Điểm M: Giao điểm đường của i_1, f Điểm M: Giao điểm đường của i_1, f Điểm M: Giao điểm đường của i_1, f

a) Xét tam giác DBI và tam giác BAH có:

\(\widehat{DIB}=\widehat{BHA}=90^o\)

BD = AB (Tam giác ABD vuông cân tại B)

\(\widehat{DBI}=\widehat{BAH}\) (Cùng phụ với góc ABH)

Vậy nên \(\Delta DBI=\Delta BAH\)(Cạnh huyền góc nhọn)

\(\Rightarrow DI=BH.\)

Tương tự ta chứng minh được EK = CH.

b) Gọi J là trung điểm DE. Do DI và EK cùng vuông góc bới BC nên chúng song song nhau.

Từ J kẻ, JM // DI // EK. Khi đó \(JM\perp BC.\)

Xét hình thang DIKE ta thấy ngay JM chính là đường trung bình của hình thang. Vậy M là trung điểm IK.

Lại có theo câu a, \(\Delta DBI=\Delta BAH\Rightarrow IB=AH\), tương tự KC = AH.

Vậy thì MB = MC hay JM là đường trung tuyến tam giác JBC.

Vậy thì \(JM=\frac{DI+EK}{2}=\frac{BH+CH}{2}=\frac{BC}{2}\)

Xét tam giác JBC có đường trung tuyến bằng một nửa cạnh huyền nên nó là tam giác vuông. Lại có  JM đồng thời là đường cao nên tam giác JBC vuông cân tại J. Do BC cố định nên J cố định.

Vậy DE luôn đi qua một điểm cố đỉnh, là đỉnh J nằm cùng phía A so với BC và thỏa mãn tam giác JBC vuông cân tại J. 

11 tháng 12 2022

:))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))chịu thôi khó mãi thôi chỉ cho câu D là được rồi