K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

xin lỗi, mình ghi nhầm, sửa lại yêu cầu:

chứng minh rằng ACB là góc nhọn

5 tháng 4 2017

A B C D

\(\Delta ABC\)có cạnh AB nhỏ nhất=> AB<AC=> \(\widehat{ACB}\le60^0\le\widehat{ABC}\)

BD là tia đối của BA=>\(\widehat{CBD}\ge60^0\)

Xét \(\Delta DBC:\widehat{CBD}\ge60^0\Rightarrow\widehat{BCD}+\widehat{BDC}\le120^0\)

Mà \(\Delta DBC\)có BD=BC\(\Rightarrow\Delta DBC\)cân tại B\(\Rightarrow\widehat{BCD}=\widehat{BDC}\le120^0:2=60^0\)

Ta lại có \(\widehat{BCD}+\widehat{ACB}\le60^0+60^0=120^0\Rightarrow\widehat{ACD}\le120^0\)

Xét \(\Delta ACD:\widehat{ACD}\le120^0;\widehat{ADC}\le60^0\Rightarrow\widehat{ACD}>\widehat{ADC}\Rightarrow\widehat{DAC}\ge60^0\)

\(\Rightarrow\Delta ABC:\widehat{BAC}\ge60^0;\widehat{ACB}\le60^0\Rightarrow\widehat{ABC}\le60^0\)

Vậy \(\widehat{ABC}\)là góc nhọn (đpcm)

26 tháng 2 2021

a) Xét tg ABM và ACM có :

AB=AC(gt)

AM-cạnh chung

MB=MB(gt)

=> Tg ABM=ACM(c.c.c)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

=> AM là tia pg góc A (đccm)

b) Xét tg BNC và DNC có :

BC=CD(gt)

\(\widehat{DCN}=\widehat{BCN}\left(gt\right)\)

NC-cạnh chung

=> Tg BNC=DNC(c.g.c)

\(\Rightarrow\widehat{CND}=\widehat{CNB}=\frac{\widehat{DNB}}{2}=\frac{180^o}{2}=90^o\)

\(\Rightarrow CN\perp BD\left(đccm\right)\)

c) Có : AB=AC(gt)

=> Tg ABC cân tịa A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(1)

- Do tg BNC=DNC(cmt)

\(\widehat{ABC}=\widehat{BDC}\)(2)

- Từ (1) và (2)\(\Rightarrow\widehat{BDC}=\widehat{ACB}\)

- Có : \(\widehat{ADC}+\widehat{BDC}=180^o\)

        \(\widehat{ACB}+\widehat{BCE}=180^o\)

Mà : \(\widehat{BDC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{ADC}\left(đccm\right)\)

d) Xét tg ACD và EBC có :

BC=CD(gt)

DA=CE(gt)

\(\widehat{BCE}=\widehat{ADC}\left(cmt\right)\)

=> Tg ACD=EBC(c.g.c)

=> AC=BE

Mà AC=AB(gt)

=> BE=AB (đccm)

#H