Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AC=BD
c: ABDC là hình bình hành
=>AB//DC
a: Xét ΔABM và ΔACM có
AM chung
AB=AC
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét tứ giác ABDC có
M là trung điểm của BC
M la trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
\(2,f\left(0\right)=0+1=1;f\left(-1\right)=-3+1=-2\\ 3,\\ a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\\ b,\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{B}=\widehat{C}\\ c,\left\{{}\begin{matrix}AB=AC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{B}=\widehat{MCD}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\)
Bn tự vẽ hình
a) Xét Δ AMB và Δ AMC
AB=AC
BM=MC
AM chung
⇒ Δ AMB = Δ AMC
b) Xét Δ AMB và Δ DMC
DM=AM
BM=CM
AMB=CMD (đối đỉnh)
⇒ Δ AMB = Δ DMC
⇒ ABM=DCM (2 góc t.ứng)
Mà 2 góc này ở vị trí SLT
⇒ AB//CD
c) Bn tự lm, tương tự phần b)
a) Xét tam giác AMB và tam giác AMC có:
+ AB = AC (gt).
+ MB = MC (M là trung điểm của BC).
+ AM chung.
=> Tam giác AMB = Tam giác AMC (c - c - c).
b) Xét tứ giác ABCD có:
+ M là trung điểm của BC (gt).
+ M là trung điểm của AD (MD = MA).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Tứ giác ABCD là hình bình hành (cmt).
=> AC // BD (Tính chất hình bình hành).