Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\Delta ABC~\Delta DEF\)
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)
Ta có cạnh nhỏ nhất của \(\Delta ABC\)là 6 cm mà cạnh nhỏ nhất của \(\Delta DEF\)là 9 cm
vậy \(\Rightarrow DE=9cm\)
Độ dài cạnh DE là : \(\frac{AB}{DE}=\frac{AC}{DF}\Leftrightarrow\frac{6}{9}=\frac{14}{DF}\)
\(\Rightarrow DF=\frac{14.9}{6}=21cm\)
Độ dài cạnh EF là : \(\frac{AB}{DE}=\frac{AC}{DF}\Leftrightarrow\frac{6}{9}=\frac{10}{EF}\)
\(\Rightarrow EF=\frac{10.9}{6}=15cm\)
Chúc bạn học tốt !
Bài làm
Gọi độ dài của DF là x
Độ dài của EF là y
Vì tam giác ABC ~ Tam giác DEF
=>
hay
Vậy DF = 21 ( cm )
EF = 15 ( cm )
# Vô thống kê của mik xem hình #
Vì theo đề tam giác A*B*C* đồng dạng với tam giác ABC nên ta suy ra:
AB/A*B*=BC/B*C*=3/4,5=5/B*C*
vậy B*C* = (4,5 x 5)/5 = 7.5cm
\(\frac{AC}{A^,C^,}\)=\(\frac{AB}{A^,B^,}\)= \(\frac{3}{4.5}\)=\(\frac{7}{A^,C^,}\)
\(A^,C^,\)= \(\frac{4.5\times7}{3}\)= 10.5 cm
bạn chú ý nhé cái trên sao là phẩy đó ^_^
Chúc bạn hok giỏi nhé
6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
ΔABC đồng dạng với ΔMNP
=>\(\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}\)
ΔABC đồng dạng với ΔMNP
=>Độ dài cạnh nhỏ nhất của ΔMNP sẽ là độ dài tương ứng với cạnh nhỏ nhất của ΔABC
mà cạnh nhỏ nhất của ΔABC là AB và cạnh tương ứng của AB trong ΔMNP là MN
nên MN=2,5cm
=>\(\dfrac{5}{2,5}=\dfrac{12}{MP}=\dfrac{13}{NP}\)
=>\(\dfrac{12}{MP}=\dfrac{13}{NP}=2\)
=>MP=12/2=6(cm); NP=13/2=6,5(cm)
Ta có: ΔABC∼ΔDEF
nên AB/DE=BC/EF=AC/DF
=>6/9=10/EF=14/DF
=>10/EF=14/DF=2/3
=>EF=15cm; DF=21cm