K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

Hỏi đáp Toán

a. \(\left\{{}\begin{matrix}\widehat{D}=\widehat{E}=90^o\\\widehat{C}.chung\end{matrix}\right.\Rightarrow\Delta ADC\sim\Delta BEC\left(gg\right)\)

b. \(\left\{{}\begin{matrix}\widehat{HDB}=\widehat{BEC}=90^o\\\widehat{B}.chung\end{matrix}\right.\Rightarrow\Delta BDH\sim\Delta BEC\left(gg\right)\)

\(\Rightarrow\frac{BD}{DH}=\frac{BE}{EC}\Leftrightarrow BD\cdot EC=DH\cdot BE\)

c. \(\left\{{}\begin{matrix}\widehat{IAE}=\widehat{EBD}\left(phu_.\widehat{BHD}=\widehat{AHE}\right)\\\widehat{AEI}=\widehat{BED}\left(gt\right)\end{matrix}\right.\Rightarrow\Delta EBD\sim\Delta EAI\left(gg\right)\)

\(\Rightarrow\frac{BD}{BE}=\frac{AI}{AE}\Leftrightarrow AE\cdot BD=AI\cdot BE\) (1)

Tương tự: \(\Delta ABE\sim\Delta IDE\)

\(\Rightarrow AB\cdot DE=ID\cdot BE\) (2)

Cộng (1), (2) theo vế ta có đpcm

4 tháng 5 2019

Cho hình vuông ABCD, M là trung điểm AB. Trên tia đối của tia CB vẽ CN=AM. I là trung điểm MN. Tia DI cắt BC tại E, MN cắt CD tại F. Từ M vẽ MK vuông góc với AB và cắt DE tại K.

a, Cm MKNE là hình thoi (đã làm được)

b, Cm A,I,C thẳng hàng

c, Cho AB=a. Tính diện tích  BMEtheo a (Đã làm được)

Giải Giùm mình đi, nhất là câu b

4 tháng 5 2019

BẠn giải giùm mình đi rùi mình giải bài của bạn cho

24 tháng 7 2020

B C A D E F H Bài làm:

1) Tam giác BDH ~ Tam giác BEC (g.g) vì:

\(\hept{\begin{cases}\widehat{HBD}=\widehat{EBC}\left(gt\right)\\\widehat{BDH}=\widehat{BEC}=90^0\end{cases}}\)

2) 

a) Theo phần 1 có 2 tam giác đồng dạng nên ta có tỉ số sau: \(\frac{BH}{BC}=\frac{BD}{BE}\Leftrightarrow BH.BE=BD.BC\left(1\right)\)

b) Tương tự ta CM được: \(CH.CF=CD.BC\left(2\right)\)

Cộng vế (1) và (2) ta được: \(BH.BE+CH.CF=BD.BC+CD.BC\)

\(=\left(BD+DC\right).BC=BC.BC=BC^2\)

3)

a) Tam giác AEB ~ Tam giác AFC (g.g) vì:

\(\hept{\begin{cases}\widehat{BAE}=\widehat{FAC}\left(gt\right)\\\widehat{AEB}=\widehat{CFA}=90^0\end{cases}}\)

\(\Rightarrow\frac{AE}{FA}=\frac{AB}{AC}\)

Tam giác AEF ~ Tam giác ABC (c.g.c) vì:

\(\hept{\begin{cases}\frac{AE}{FA}=\frac{AB}{AC}\left(cmt\right)\\\widehat{FAE}=\widehat{BAC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\)

b) Tương tự a ta CM được: \(\widehat{DEC}=\widehat{ABC}\)

\(\Rightarrow\widehat{AEF}=\widehat{DEC}\Leftrightarrow90^0-\widehat{AEF}=90^0-\widehat{DEC}\Rightarrow\widehat{FEB}=\widehat{BED}\)

=> EB là phân giác của tam giác DEF

Tương tự ta chứng minh được DA,FC là các đường phân giác còn lại của tam giác DEF, mà giao 3 đường này là H

=> H là giao 3 đường phân giác của tam giác DEF

=> H cách đều 3 cạnh của tam giác DEF (tính chất đường pg của tam giác)

4) ch nghĩ ra nhé

25 tháng 7 2020

4) 

+) Gọi I là giao điểm của đường trung trực HC và đường trung trực MN 

=> IH = IC; IM = IN 

Lại có MH = NC ( gt) 

=> \(\Delta\)IMH = \(\Delta\)INC => ^MHI = ^NCI mà ^NCI = ^HCI = ^CHI ( vì IH = IC => \(\Delta\)IHC cân )

=> ^MHI = ^CHI hay ^BHI = ^CHI => HI là phân giác ^BHC 

=> I là giao điểm của phân giác ^BHC và trung trực HC 

=> I cố định 

=> Đường trung trực của đoạn MN luôn đi qua một điểm cố định

29 tháng 4 2016
T.giac vuong Abe ~ t.giac vuông afc ( a chung) b/ t.giac vuông hfb ~ t.giac vuông hec ( h1= h2 do đối đỉnh) => he.hb=hc.hf C/ afe ~ abc => AF/AE=AC/AB ( 1) A CHUNG => T.GIAC afe ~ t.giac acb => góc aef = góc abc D/ t.giac bec ~ adc ( tự cm) => AC/BC=DC/EC AC/BC = DC/EC ,góc C CHUNG => t giac CED ~ t.giac CBA mà t.giac cba ~ vs t giac FEA => t.giac FEA ~ VS T.giac CED => góc aef = ced mà aef + feb = 90* Ced + deb =90* Nên goc feb = góc deb => BE LÀ p.g góc DEF :)) lm biếng viết hoa pn thông cảm đọc nha
15 tháng 4 2017

Nguyễn Trọng Phúc cho mình hỏi tại sao AC/BC = DC/EC?

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;