K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

1 tháng 2 2016

minh moi hoc lop 6 thoi

31 tháng 1 2016

Áp dụng định lý Pi ta go, ta có:

AH2 + HC2 = AC2

<=> AH2 = AC2 - HC2

<=> AH2 = 152 - 92

<=> AH2 = 144

Áp dụng định lý Pi ta go, ta có:

AB2 = AH2 + BH2

<=> AB2 = 144 + 52

<=> AB2 = 144 + 25

<=> AB2 = 169

=> \(AB=\sqrt{169}=13\)

=> AB = 13 cm

nha

31 tháng 1 2016

Bạn tự vẽ hình nhé.

Xét tam giác AHC vuông tại H có: AC2 = AH2 + HC2 (Định lí Pitago)

=> 152 = AH2 + 92

=> AH2 = 144

Xét tam giác AHB vuông tại H có AB2 = AH2 + HB2 (Định lí Pitago)

=> AB2 = 144 + 52

=> AB2 = 169

=> AB = 13 (cm)

25 tháng 1 2016

HB=HC

AH CẠNH CHUNG

AB=AC (CẠNH HUYỀN)

DO ĐÓ:AHB=AHC (C-C-C)

MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!

4 tháng 4 2021

Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá

a, Ta có : BH = HC = BC : 2

    =>    BH = HC = 8 : 2

    =>    BH = HC = 4 ( cm )

    => BH = HC

b, - Xét tam giác AHB vuông tại H có :

          AC= AH2 + HC2

=>     52  =   AH2  +   42

=>    25  = AH2  +  16

=> AH2 = 25 + 16

=> AH2 = 41

=> AH = 20,5 ( cm )

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

6 tháng 2 2022

a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC

b.áp dụng định lý pitago ta có:

\(AB^2=AH^2+HB^2\)

\(5^2=AH^2+\left(8:2\right)^2\)

\(AH=\sqrt{5^2-4^2}=3cm\)

c.Xét tam giác vuông BHD và tam giác vuông CHE, có:

BH = CH ( cmt )

góc B = góc C ( ABC cân )

Vậy tam giác vuông BHD = tam giác vuông CHE 

=> HD = HE 

=> HDE cân tại H

d.ta có AB = AD + DB

           AC = AE + EC

Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )

=> AD = AE 

=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )

Chúc bạn học tốt !!!!