Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC:
\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)
\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)
Pitago tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)
b.
Áp dụng hệ thức lượng cho tam giác vuông ACH:
\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)
Tiếp tục là hệ thức lượng:
\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)
\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)
a: BC=BH+CH
=3+9
=12(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=3\cdot9=27\)
=>\(AH=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{3\cdot12}=6\left(cm\right)\\AC=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)
b: \(tan^2C+cot^2C\)
\(=\left(\dfrac{AC}{AB}\right)^2+\left(\dfrac{AB}{AC}\right)^2\)
\(=\dfrac{AC^2}{AB^2}+\dfrac{AB^2}{AC^2}\)
\(=\dfrac{HC\cdot BC}{HB\cdot BC}+\dfrac{HB\cdot BC}{HC\cdot CB}\)
\(=\dfrac{HC}{HB}+\dfrac{HB}{HC}\)
sửa đề : \(\frac{AB}{AC}=\frac{5}{6}\Rightarrow AB=\frac{5}{6}AC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{900}=\frac{1}{\left(\frac{5}{6}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=6\sqrt{61}\)cm
\(\Rightarrow AB=\frac{30\sqrt{61}}{6}=5\sqrt{61}\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=61\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{25.61}{61}=25\)cm
=> \(HC=BC-HB=61-25=36\)cm
ta có: \(\frac{AB}{AC}\)\(=\frac{5}{6}\Rightarrow AB=\frac{5}{6}AC\)
áp dụng hệ thức lượng: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{30^2}=\frac{1}{\left(\frac{5}{6}AC\right)^2}+\frac{1}{AC^2}=\frac{1}{AC^2}\)\(\left(\frac{1}{\left(\frac{5}{6}\right)^2}+1\right)\)\(=\frac{61}{25}.\)\(\frac{1}{AC^2}\)
\(\Rightarrow AC=6\sqrt{61}\)
\(AB=\frac{5}{6}AC=5\sqrt{61}\)
\(BC=\sqrt{AB^2+AC^2}\)\(=61\)
áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=25\)
\(CH=BC-BH=36\)
Hok tốt
1.
Tam giác AMC vuông tại M với đường cao MD
Áp dụng hệ thức lượng: \(AM^2=AD.AC\) (1)
Tương tự ta có:
\(AN^2=AE.AB\) (2)
Mặt khác xét hai tam giác vuông ABD và ACE có:
\(\widehat{BAC}\) chung
\(\Rightarrow\Delta_VABD\sim\Delta_VACE\) (g.g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Leftrightarrow AB.AE=AC.AD\) (3)
(1);(2);(3) \(\Rightarrow AM^2=AN^2\) \(\Rightarrow AM=AN\)
Bài 2 tham khảo tại đây:
Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC - Hoc24