Cho tam giác ABC có các đường trung tuyến BD, CE. Lấy điểm H, K sao cho E là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Xét tứ giác AHBC có

E là trung điểm chung của AB và HC

=>AHBC là hình bình hành

Xét tứ giác ABCK có

D là trung điểm chung của AC và BK

=>ABCK là hình bình hành

b: Ta có: AHBC là hình bình hành

=>AH//BC và AH=BC

Ta có: ABCK là hình bình hành

=>AK//BC và AK=BC

Ta có: AH//BC

AK//BC

HA,AK có điểm chung là A

Do đó: H,A,K thẳng hàng

Ta có: AH=BC

AK=BC

Do đó: AH=AK

mà H,A,K thẳng hàng

nên A là trung điểm của HK

25 tháng 10 2023

a: Xét tứ giác AHBC có

E là trung điểm chung của AB và HC

=>AHBC là hình bình hành

Xét tứ giác AKCB có

D là trung điểm chung của AC và KB

=>AKCB là hình bình hành

b:AHBC là hình bình hành

=>AH//BC và AH=BC

AKCB là hình bình hành

=>AK//CB và AK=CB

AH//BC

AK//BC

mà AH,AK có điểm chung là A

nên H,A,K thẳng hàng

AH=BC

AK=BC

Do đó: AH=AK

H,A,K thẳng hàng

mà AH=AK

nên A là trung điểm của HK

Bài 1:

a: Xét tứ giác AHBC có

E la trung điểm chung của AB và CH

=>AHBC là hình bình hành

Xét tứ giác AKCB có

D là trung điểm chung của AC va KB

=>AKCB là hình bình hành

b: AHBC là hinh bình hanh

=>AH//BC và AH=BC

AKCB là hình bình hành

=>AK//BC và AK=BC

ta có: AH//BC

AK//BC

mà AH,AK có điểm chung là A

nên H,A,K thẳng hàng

Ta có: AK=BC

AH=BC

Do đó: AK=AH

mà H,A,K thẳng hàng

nên A là trung điểm của HK

Bài 2:

a: Ta có; AE+DE=AD

CF+FB=CB

ma AE=CF và AD=BC

nên DE=BF

Ta có: AM+MB=AB

CN+ND=CD
ma MB=ND va AB=CD

nên AM=CN

Xét ΔEAM và ΔFCN có

EA=FC

\(\hat{EAM}=\hat{FCN}\) (ABCD là hình bình hành)

AM=CN

Do đó: ΔEAM=ΔFCN

=>EM=FN

Xét ΔEDN và ΔFBM có

ED=FB

\(\hat{EDN}=\hat{FBM}\) (ABCD là hình bình hành)

DN=BM

Do đó: ΔEDN=ΔFBM

=>EN=FM

Xét tứ giác EMFN có

EM=FN

EN=FM

Do đó: EMFN là hình bình hành

b: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường(1)

ta có: EMFN là hình binh hành

=>EF cắt MN tại trung điểm của mỗi đường(2)

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra AC,EF,BD,MN đồng quy

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

12 tháng 8

x=2,y=−1,z=−1/3, và t=−2. là kết quả nhé bn



5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

31 tháng 7 2019

Bài 2:

A C D B E H K

Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK

Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)

Do ED là đường trung bình tam giác BAK nên ED // AK (2)

Do ED là đường trung bình tam giác HCA nên ED // AH (3)

Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)

Từ (1) và (4) suy ra đpcm.

31 tháng 7 2019

Bài 1:

A B C M K H

Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!

Giải

Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)

Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK 

Xét \(\Delta\)BMK và \(\Delta\)CMH có:

MH = MK (chứng minh trên)

^BMK = ^HMC

BM = CM (do M là trung điểm BC)

Suy ra  \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)

Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)

Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)