\(\dfrac{DB}{DC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)

19 tháng 1 2020

Bài này bạn tự vẽ hình nha

Áp dụng tính chất phân giác trong ta có :

AD là phân giác góc A \(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)

Tương tự :\(\frac{EC}{EA}=\frac{BC}{AB};\frac{FA}{FB}=\frac{CA}{BC}\)

Do đó : \(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AB.AC.BC}{AB.AC.BC}=1\)

ĐPCM. tik mik nha !!!!

12 tháng 3 2017

Áp dụng tính chất đường phân giác trong tam giác ABC ta có:

\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\left(1\right)\)

\(\dfrac{EC}{EA}=\dfrac{BC}{AB}\left(2\right)\)

\(\dfrac{FA}{FB}=\dfrac{AC}{BC}\left(3\right)\)

Nhân cả hai vế của (1),(2) và (3) ta có:

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)

ĐPCM

22 tháng 1 2018

Bài 1 dễ r làm bài 2 :

A B C D F E

Ta có : AD là tia phân giác của góc BAC

=> \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\) (1)

Ta có : BE là tia phân giác của góc ABC

\(\Rightarrow\dfrac{EC}{EA}=\dfrac{BC}{BA}\) (2)

Ta có : CF là tia phân giác của góc BCA

\(\Rightarrow\dfrac{FA}{FB}=\dfrac{AC}{BC}\) (3)

Nhận 2 vế của (1)(2)(3) ta được :

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB.AC.BC}{AB.BC.CA}=1\)

24 tháng 1 2021

A B C O Q P F E D

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q

Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)

DB/DC*EC/EA*FA/FB

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)

DB/DC=AB/AC

EC/EA=BC/BA

FA/FB=CA/CB

=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1