Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BKHC có
\(\widehat{BKC}=\widehat{BHC}=90^0\)
Do đó: BHKC là tứ giác nội tiếp
b: Xét (BC/2) có
BC là đường kính
KH là dây
Do đó: KH<BC
EM thử nha, sai thì chịu!
Gọi M là trung điểm BC. Khi đó BM = \(\frac{1}{2}BC\)(1) và CM = \(\frac{1}{2}BC\)(2)
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên:
+)Tam giác KCB có trung tuyến \(KM=\frac{1}{2}BC\) (3)
Tương tự \(HM=\frac{1}{2}BC\)(4)
Từ (1), (2), (3) và (4) ta có B, K, H, C luôn cách M một khoảng không đổi và bằng \(\frac{1}{2}BC\) nên B, K, H, C cùng thuộc đường trong tâm M, bán kính \(\frac{1}{2}BC\). vậy ta có đpcm.
Hình sẽ đăng sau.
Xét tứ giác AKIH có
\(\widehat{AKI}+\widehat{AHI}=180^0\)
nên AKIH là tứ giác nội tiếp
hay A,K,I,H cùng thuộc 1 đường tròn
Tâm là trung điểm của AI
ta có tam giác AKI vuông tại K nên AKI nằm trên đường tròn đường kinh AI
tam giác AHI vuông tại H nên AHI nằm trên đường tròn đường kinh AI
Nên AKIH nằm trên đường tròn đường kinh AI, tâm là trung điểm của AI
a: Xét tứ giác BKHC có
góc BKC=góc BHC=90 độ
=>BKHC nội tiếp đường tròn đường kính BC
=>I là trung điểm của BC
b: Xét (I) có
BC là đường kính
KH là dây
=>KH<BC
c: ΔIKH cân tại I
mà IJ là đường trung tuyến
nên IJ vuông góc KH
Đáp án:
Giải thích các bước giải:
1. Xét tứ giác CEHD có :
CEH = 90 ( BE là đường cao )
CDH = 90 ( AD là đường cao )
⇒ CEH + CDH = 90 + 90 = 180
Mà CEH và CDH là hai góc đối của tứ giác CEHD
⇒ CEHD là tứ giác nội tiếp (đpcm)
2. BE là đường cao ( gt )
⇒ BE ⊥ AB ⇒ BFC = 90
Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB
⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)
3. Xét ΔAEH và ΔADC có :
AEH = ADC (=90)
A chung
⇒ ΔAEH ~ ΔADC
⇒ AE/AD = AH/AC
⇒ AE.AC = AH.AD
Xét ΔBEC và ΔADC có :
BEC = ADC (=90)
C chung
⇒ ΔBEC ~ ΔADC
⇒ AE/AD = BC/AC
⇒ AD.BC = BE.AC (đpcm)
4. Có : C1 = A1 (cùng phụ góc ABC)
C2 = A1 ( hai góc nối tiếp chắn cung BM )
⇒ C1 = C2 ⇒ CB là tia phân giác HCM
Lại có : CB ⊥ HM
⇒ Δ CHM cân tại C
⇒ CB là đường trung trực của HM
⇒ H và M đối xứng nhau qua BC (đpcm)
5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )
⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)
Có : Tứ giác CEHD nội tiếp (câu 1)
⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)
Từ (*) và (**) ta suy ra :
E1 = E2
⇒ EB là tia phân giác DEF
Cm tương tự ta được : FC là tia phân giác của DFE
Mà BE và CF cắt nhau tại H
⇒ H là tâm của đường tròn nội tiếp ΔDEF
Tứ giác BKHC có 2 góc BKC và BHC cùng nhìn cạnh BC bằng nhau (do cùng bằng 90)
=> BKHC nội tiếp tâm O là trung điểm BC
a: Xét tứ giác BKHC có
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\)
Do đó: BHKC là tứ giác nội tiếp
hay B,H,K,C cùng nằm trên một đường tròn
Tâm là trung điểm của BC