Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AKIH có
\(\widehat{AKI}+\widehat{AHI}=180^0\)
nên AKIH là tứ giác nội tiếp
hay A,K,I,H cùng thuộc 1 đường tròn
Tâm là trung điểm của AI
a: Xét tứ giác BKHC có
\(\widehat{BKC}=\widehat{BHC}=90^0\)
Do đó: BHKC là tứ giác nội tiếp
b: Xét (BC/2) có
BC là đường kính
KH là dây
Do đó: KH<BC
đề phải là A;D;C;E chứ bạn ? xem lại nhé
a, Gọi I là trung điểm AC
Xét tam giác CEA vuông tại E, I là trung điểm
=> \(IE=\frac{1}{2}AC=AI=IC\)(*)
Xét tam giác ADC vuông tại D, I là trung điểm
=> \(DI=\frac{1}{2}AC=AI=IC\)(**)
Từ (*) ; (**) suy ra A;D;C;E cùng thuộc (I;AC/2)
EM thử nha, sai thì chịu!
Gọi M là trung điểm BC. Khi đó BM = \(\frac{1}{2}BC\)(1) và CM = \(\frac{1}{2}BC\)(2)
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên:
+)Tam giác KCB có trung tuyến \(KM=\frac{1}{2}BC\) (3)
Tương tự \(HM=\frac{1}{2}BC\)(4)
Từ (1), (2), (3) và (4) ta có B, K, H, C luôn cách M một khoảng không đổi và bằng \(\frac{1}{2}BC\) nên B, K, H, C cùng thuộc đường trong tâm M, bán kính \(\frac{1}{2}BC\). vậy ta có đpcm.
Hình sẽ đăng sau.
Sửa đề: Đường cao BD
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)
Do đó: BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AD\cdot AC=AE\cdot AB\)
a: Xét tứ giác AHIK có
\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)
=>AHIK là tứ giác nội tiếp
=>A,H,I,K cùng thuộc một đường tròn
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó ΔACD vuông tại C
=>AC\(\perp\)CD
Ta có: BH\(\perp\)AC
AC\(\perp\)CD
Do đó:BH//CD
c: Ta có: BH//CD
I\(\in\)BH
Do đó: BI//CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó; ΔABD vuông tại B
Ta có:BD\(\perp\)BA
CI\(\perp\)BA
Do đó:BD//CI
Xét tứ giác BICD có
BI//CD
BD//CI
Do đó: BICD là hình bình hành
a: Xét tứ giác BKHC có
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\)
Do đó: BHKC là tứ giác nội tiếp
hay B,H,K,C cùng nằm trên một đường tròn
Tâm là trung điểm của BC
a: Xét tứ giác BFEC có
\(\widehat{BEC}=\widehat{BFC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc 1 đường tròn
b: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
hay A,N,H,M cùng thuộc 1 đường tròn
ta có tam giác AKI vuông tại K nên AKI nằm trên đường tròn đường kinh AI
tam giác AHI vuông tại H nên AHI nằm trên đường tròn đường kinh AI
Nên AKIH nằm trên đường tròn đường kinh AI, tâm là trung điểm của AI
;))
haha.