Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi giao của AH với BC là M
=>AH vuông góc BC tại M
góc AFH=góc AEH=90 độ
=>AEHF nội tiếp đường tròn đường kính AH
=>IF=IA=IE=IH
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
=>KF=KE=KB=KC
góc IFH+góc KFH
=góc IHF+góc KCH
=góc KCH+90 độ-góc KCH=90 độ
=>FK vuông góc FI
b: FI=AH/2=3cm
FK=BC/2=4cm
=>IK=căn 3^2+4^2=5cm
A B C P E F N G M K H D Q
Đề còn thiếu thì phải, điểm M ở đâu ?
Bổ sung: "Đường thẳng qua A vuông góc với PF cắt tia CF tại M ..."
Giải: Gọi D là trực tâm tam giác ABC. PE cắt AN tại Q
Dễ thấy: ^ADE = ^ACB (Cùng phụ ^DAC) (1)
\(\Delta\)BEC vuông tại E có trung tuyến EP => ^PEC = ^ECP = ^ACB
Mà ^PEC = ^ AEQ = ^ANE (Do ^AEQ và ^ANE cùng phụ ^QEN) => ^ANE = ^ACB (2)
Từ (1) và (2) => ^ADE = ^ANE => AE là phân giác ^DAN
Xét \(\Delta\)ADN có: phân giác AE; AE vuông góc DN (tại E) => \(\Delta\)ADN cân tại A
=> E là trung điểm DN => GE là đường trung bình \(\Delta\)CDN => GE // CD
Lại có: CD vuông góc AB => GE vuông góc AB hay EH vuông góc AF
Tương tự ta c/m được FH vuông góc với AE
Trong \(\Delta\)AEF có: EH vuông góc AF và FH vuông góc AE
Nên H là trực tâm \(\Delta\)AEF => AH vuông góc với EF (ĐPCM).
Từ chỗ ^ADE = ^ANE suy ra tam giác DAN cân tại A luôn nhé. Vừa nãy mình nhìn nhầm :(
a: Xét ΔABC có
BE,CF là đừog cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
b: Xét tứ giác BHCM có
BH//CM
BM//CH
=>BHCM là hình bình hành
=>BC cắt HM tại trung điểm của mỗi đường
=>H,I,M thẳng hàng
Xét ΔBIH và ΔCIM có
IB=IC
IH=IM
BH=CM
=>ΔBIH=ΔCIM
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
ΔABE = Δ HBE
⇒ BA = BH, EA = EH (các cặp cạnh tương ứng)
⇒ E, B cùng thuộc trung trực của AH
nên đường thẳng EB là trung trực của AH.