K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

 Giả sử tam giác ABC có các đường cao AH, BK, CI. Ta cần c/m AH, BK, CI đồng quy. 
~~~~~~~ 
Qua 3 đỉnh A, B, C của tam giác, lần lượt kẻ các đường thẳng song song với các cạnh đối diện, chúng cắt nhau tại A'; B'; C'. (A' nằm khác phía với A qua BC, B' nằm khác phía với B qua AC, C' nằm khác phía với C qua AB). 
Xét tam giác ABC và tam giác BAC' có: 
góc BAC = góc ABC' (so le trong) 
AB chung 
góc ABC = góc BAC' (so le trong) 
=> tam giác ABC = tam giác BAC' (gcg) 
=> AC = BC'. 
Chứng minh tương tự ta có AC = BA'. 
=> BC' = BA' => B là trung điểm của A'C'. 
Do BK _|_ AC, A'C' // AC => BK _|_ A'C'. 
=> BK là đường trung trực của A'C'. 
Cmtt => AH và CI là trung trực của B'C' và A'B'. 
=> AH, BK, CI là 3 đường trung trực của tam giác A'B'C'. Ta dễ dàng c/m được 3 đường trung trực của tam giác đồng quy dựa vào tính chất điểm nằm trên đường trung trực của một đoạn thằng thì cách đều hai mút của đoạn thẳng đó. Vậy AH, BK, CI đồng quy tại 1 điểm, điểm đó gọi là trực tâm của tam giác ABC.

21 tháng 9 2023

Tham khảo:

+) Xét tam giác HBC ta có :

HD vuông góc với BC \( \Rightarrow \) HD là đường cao tam giác HBC

BF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)BF là đường cao của tam giác HBC

CE vuông góc với HB tại E ( kéo dài HB ) \( \Rightarrow \)CE là đường cao của tam giác HBC

Ta kéo dài HD, BF, CE sẽ cắt nhau tại A

\( \Rightarrow \) A là trực tâm tam giác HBC

 

+) Xét tam giác HAB ta có :

HF vuông góc với AB \( \Rightarrow \) HF là đường cao tam giác HAB

BH vuông góc với AE tại E ( kéo dài HB ) \( \Rightarrow \)AE là đường cao của tam giác HAB

BD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)BD là đường cao của tam giác HAB

Ta kéo dài HF, BD, AE sẽ cắt nhau tại C

\( \Rightarrow \) C là trực tâm tam giác HAB

 

+) Xét tam giác HAC ta có :

HE vuông góc với AC \( \Rightarrow \) HE là đường cao tam giác HAC

AF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)AF là đường cao của tam giác HAC

CD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)CD là đường cao của tam giác HAC

Ta kéo dài CD, HE, AF sẽ cắt nhau tại B

\( \Rightarrow \) B là trực tâm tam giác HAC.

21 tháng 9 2023

Tham khảo:

Xét tam giác BFC và tam giác BEC có :

BC chung

FC = BE

\(\widehat {BFC} = \widehat {BEC} = {90^o}\)

 ( cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)

Xét tam giác CFA và tam giác ADC ta có :

CF = AD

AC chung

\(\widehat {ADC} = \widehat {AFC} = {90^o}\)

(cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)

Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau 

Ta có: ΔABC đều

mà AD,BE,CF là các đường trung tuyến

nên AD,BE,CF vừa là đường cao vừa là phân giác

Xét ΔABC có

AD,BE,CF là trung tuyến

AD,BE,CF cắt nhau tai G

=>G là trọng tâm

=>BG=2/3BE=2BM và CG=2/3CF=2CN

=>M,N lần lượt là trung điểm của GB,GC

=>GD,CM,BN đồng quy

=>AD,CM,BN đồng quy

Xét ΔAFC vuông tại F và ΔAEB vuông tại E có

CF=BE

góc ACF=gócABE

=>ΔAFC=ΔAEB

=>AC=AB

Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

EB=DA

góc C chung

=>ΔCEB=ΔCDA

=>CB=CA=AB

=>ΔABC đều