Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAED và ΔCEF có
EA=EC
\(\widehat{AED}=\widehat{CEF}\)
ED=EF
Do đó:ΔAED=ΔCEF
Ta có:ΔAED=ΔCEF
nên \(\widehat{DAE}=\widehat{FCE}\)
b: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
SUy ra: AD//CF
c: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE=1/2BC
Giải
a) Xét ∆ADE và ∆CFE, ta có:
AE = CE (gt)
ˆAED = CEF^ (đối đỉnh)
DE = FE(gt)
Suy ra: ∆ADE = ∆CFE (c.g.c)
⇒⇒ AD = CF (hai cạnh tương ứng)
Mà AD = DB (gt)
Vậy: DB = CF
b) Ta có: ∆ADE = ∆CFE (chứng minh trên)
⇒ˆADE = CFE^ (2 góc tương ứng)
⇒⇒ AD // CF (vì có cặp góc so le trong bằng nhau)
Hay AB // CF
Xét ∆DBC = ∆CDF, ta có:
BD = CF (chứng minh trên)
ˆBDC = ˆFCD (hai góc so le trong vì CF // AB)
DC cạnh chung
Suy ra: ∆BDC = ∆FCD(c. g. c)
c) Ta có: ∆BDC = ∆FCD (chứng minh trên)
Suy ra: ˆC1 = ˆD1 (hai góc tương ứng)
Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)
\(\Delta\)BDC = ∆FCD => BC = DF (hai cạnh tương ứng)
Mà DE = 1 : 2 . DF(gt). Vậy DE = 1 : 2 . BC
a/Xét ΔAED va ΔCEF có:
AE=CE(vì E là trung điểm của AC)
∠AED=∠CEF(đối đỉnh)
ED=EF(vì E là trung điểm của DF)
nên: ΔAED=ΔCEF(c-g-c)
do đó: AD=CF
mà AD=BD (vì D là trung điểm của AB)
vậy BD=CF
b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)
mà hai góc này ở vị trí so le trong
nên AB//CF
Ta có:AB//CF(cmt)
nên ∠BDC=∠FCD (hai góc so le trong)
Xét: ΔBDC và ΔFCD có:
DC là cạnh chung
∠BDC=∠FCD(cmt)\
DB=CF(cmt)
nên ΔBDC=ΔFCD(c-g-)
c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)
mà hai góc này ở vị trí so le trong
nên DE//BC
Ta có: \(DE=\dfrac{1}{2}DF\)(vì E là trung điểm của DF)
mà DF=CB(vì ΔFCD=ΔBDC)
vậy \(DE=\dfrac{1}{2}CB\)
A B C F E D
A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
Ta có hình vẽ:
B C A D E N M
a/ Xét tam giác ABC và tam giác AED có:
BA = AE (GT)
góc BAC = góc DAE (đối đỉnh)
CA = AD (GT)
=> tam giác ABC = tam giác AED (c.g.c)
b/ Ta có: tam giác ABC = tam giác AED (câu a)
=> góc DEA = góc ABC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> BC // DE (đpcm)
c/ Ta có: BC // DE (đã chứng minh trên)
=> góc DNA = góc AMC so le trong
=> đường MN qua A
hay NA trùng AM
hay N,A,M thẳng hàng
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a,Xét tam giác AED và tam giác CEF có:
AE = CE
góc AED = góc CEF
DE = FE
Nên: tam giác AED và tam giác CEF
b, Ta có: tam giác AED và tam giác CEF
=> góc DAE = góc FCE
Mặt khác: 2 góc này ở vị trí so le trong
Nên: AD//CF
c, Ta có AD //CF
Mà AD = BD
=> BD//CF
=> góc DBC = góc DFC (1)
Ta có: tam giác AED và tam giác CEF
=> góc ADE = góc CFE (2)
Từ (1),(2) ta có: góc DBC = góc ADE
Mà 2 có này ở vị trí đồng vị
Nên: DF//BC
Cậu tham khảo nhé!!!
còn hình vẽ thì sao bạn?