Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Chuẩn hóa BC = 5; AC = 4; AB = 3 →∆ABC vuông tại A.
Khi quay ∆ABC quanh AC, ta được khối nón N 1 có bán kính đáy r = AB = 3, độ dài đường sinh l = BC = 5 suy ra diện tích toàn phần của N 1 là S b = 24 π
Khi quay ∆ABC quanh AB, ta được khối nón N 2 có bán kính đáy r = AC = 4, độ dài đường sinh l = BC = 5 suy ra diện tích toàn phần của N 2 là S c = 36 π
Khi quay ∆ABC quanh BC, ta được khối nón N 3 , N 4 có bán kính đáy là chiều cao của tam giác ABC và bằng 12/5, độ dài đường sinh lần lượt là 3,4 suy ra diện tích toàn phần của khối tròn xoay S a = S 3 + S 4 = 708 π 25
Vậy S C > S a > S b
b/
Xét \(\Delta ABD\) và \(\Delta EBC\) có:
\(\widehat{A}=\widehat{E}=90^o\) ( vì \(\Delta ABC\) vuông tại A và \(CE\perp BD\) tại E)
\(\widehat{ABD}=\widehat{EBC}\) ( vì BD là tia phân giác của \(\widehat{ABC}\) )
\(\Rightarrow\Delta ABD~\Delta EBC\left(g.g\right)\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AD}{EC}\) ( 2 cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow BD.EC=BC.AD\)
c/ Vì \(\Delta ABD~\Delta EBC\left(cmt\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{ECB}\)
Mà \(\widehat{ADB}=\widehat{EDC}\) ( 2 góc đối đỉnh)
\(\Rightarrow\widehat{EDC}=\widehat{ECB}\)
Xét \(\Delta ECD\) và \(\Delta EBC\) có:
\(\widehat{E}\) là góc chung
\(\widehat{EDC}=\widehat{ECB}\left(cmt\right)\)
\(\Rightarrow\Delta ECD~\Delta EBC\left(g.g\right)\)
\(\Rightarrow\dfrac{EC}{EB}=\dfrac{CD}{BC}\) ( 2 cặp cạnh tương ứng tỉ lệ)
d/ Xét \(\Delta EBC\) vuông tại E, đường cao EH ứng với cạnh BC
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(EC^2=CH.CB\) (3)
Vì \(\Delta ECD~\Delta EBC\left(cmt\right)\)
\(\Rightarrow\dfrac{ED}{EC}=\dfrac{EC}{EB}\) ( 2 cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow EC.EC=ED.EB\)
\(\Leftrightarrow EC^2=ED.EB\left(4\right)\)
Từ (3) và (4) \(\Rightarrow CH.CB=ED.EB\)
Đáp án B
Hình nón có chiều cao AB và bán kính BC. Diện tích xung quanh của hình nón là S = π a .2 a = 2 π a 2
a) Xét \(\Delta AKB\) và \(\Delta AKC\) , có :
AK là cạnh chung
AB = AC ( gt )
BK = KC ( K là trung điểm của BC )
=> \(\Delta AKB=\Delta AKC\left(cgc\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà góc AKB + AKC = 1800 ( 2 góc kề bù )
=> AKB = AKC= \(\frac{180^0}{2}\)= 900
Vậy AK \(\perp BC\)
b)
Ta có :
AK \(\perp BC\) ( Theo câu a )
EC \(\perp BC\) ( gt )
=> EC // AK
c) Tam giác BCE là tam giác vuông
GÓC BEC = 500
a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)
b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
CH=BC-BH=25-9=16(cm)