Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
k nhé
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
a: Xét ΔCAI vuông tại A và ΔCHi vuông tại H có
CI chung
góc ACI=góc HCI
=>ΔCAI=ΔCHI
=>IA=IH
b: IA=IH
IH<IB
=>IA<IB
c: Xét ΔCAB có
K là giao điểm của hai tia phân giác góc ngoài tại đỉnh A,B
=>CK là phân giác của góc ACB
=>C,I,K thẳng hàng
5b
a)\(\widehat{ADC}>\widehat{ABC}\)
b)\(\widehat{BOC}>\widehat{BAC}\)
7b
Theo định lí tổng ba góc trong 1 tam giác ta có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà \(\widehat{B}\)là góc tù => \(\widehat{B}>90^o\)
Tổng 3 góc trg 1 tam giác = 180 độ => A + C = 180 - B
(Giả sử góc B = 80 độ và A = C thì ta có A + C = 180 - 80 = 90 => A = C = 100/2 = 50 độ)
Từ trên suy ra góc A và góc C là 2 góc nhọn
d)
Xét tam giác AMB có ABM<AMB(60 độ < 80 độ)
=>AM<AB (1)
Xét tam giác DAB có ADB<DAB( 70 độ<80 đô)
=> AB<BD (2)
Từ (1) và (2)
=> AM<BD ( đpcm)
Còn vẽ hình bạn tự vẽ nha, cũng không khó lắm đâu, vẽ trên máy tính thì khó thôi)
a) C=180-80-60=40( độ)
Tam giác ABC có C<B<A
=> AB<AC<BC
b) Xét tam giác BAD và tam giác BMD có
BA=BM( giả thiết)
DBA=DBM ( vì tia BD là phân giác của góc ABC)
Cạnh BD cung
=> \(\Delta BAD=\Delta BMD\left(c.g.c\right)\)
c) Có \(\Delta BAD=\Delta BMD\)( theo câu b)
=>DA=DM ( 2 cạnh tương ứng)
Góc DAB= gócDMB ( 2 góc tương ứng) ( Xin OLM cho bổ sung vào hệ thống kí hiệu góc để viết cho tiện)
=> Góc DMC= góc DAH ( 2 góc kề bù của 2 góc bằng nhau)
Xét tam giác DAH và tam giác DMC có
góc CDM= góc HAD ( 2 góc đối đỉnh)
DA=DM
DAH=DMC
=>\(\Delta DAH=\Delta DMC\left(g.c.g\right)\)
=> DH=DC ( 2 cạnh tương ứng)
=> tam giác DHC cân tại D
Vì BD là phân giác của góc ABC nên góc DBA=góc DBM=60:2=30 độ
Có ADB=180-80-30=70 độ
MDB=180-80-30=70 độ ( vì góc DMB= góc DAB= 80 độ)
=> góc MDA=MDB+ADB=70+70=140 độ
Ta có CDH=MDA=140 độ ( 2 góc đối đỉnh)
=> DHC = \(\frac{180-140}{2}=20\) độ
a: góc C=180-60-80=40 độ
góc BAD=góc CAD=60/2=30 độ
góc ADB=180-80-30=70 độ
b: vì góc BAD<góc ADB<góc ABD
nên BD<AB<AD
c: góc ADC=180-70=110 độ
Vì góc ADC>góc C>góc DAC
nên AC>AD>CD
1, Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(tổng 3 góc tam giác)
\(\Leftrightarrow\widehat{C}+90^o+\widehat{C}=180^o\)
\(\Leftrightarrow2\widehat{C}=90^o\)
\(\Leftrightarrow\widehat{C}=45^o\)
\(\Rightarrow\widehat{A}=\widehat{C}+10=55^o\)
\(\Rightarrow\widehat{B}=180^o-\widehat{A}-\widehat{C}=180^o-55^o-45^o=80^o\)
2,
Vì tam giác ABC vuông tại A
=> ^B + ^C = 90o
Vì BM là phân giác ^ABC
=>^B1 = \(\frac{\widehat{ABC}}{2}\)
Tương tự ^C1 = \(\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)
Theo tổng 3 góc trong tam giác \(\widehat{BMC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-45^o=135^o\)
Vì AB > BC > AC ⇒ ∠C > ∠A > ∠B . Chọn D