Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)
\(\Rightarrow A\approx92^0\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)
\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)
\(r=\dfrac{S}{p}=\dfrac{80}{31}\)
Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.
+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)
+ Chiều cao ha: ha = AC = b = 16.
+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.
Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.
+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.
Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.
+ Đường trung tuyến ma:
ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.
nữa chu vi tgABC là
(24+13+15)/2 = 24,5cm
áp dụng ct heron ta có diện tích tam giác ABC là
\(\sqrt{24,5\left(24,5-24\right)\left(24,5-13\right)\left(24,5-12\right)}\approx41,9635cm\)
ta có ct tính bk đg tròn nội tiếp
\(r=\dfrac{S}{p}\approx\dfrac{41,9635}{24.5}\approx1,7128cm\)
Do tam giác ABC đều nên tâm đường tròn ngoại tiếp O trùng trọng tâm
Gọi AM là trung tuyến (kiêm đường cao), theo tính chất trọng tâm:
\(AM=\dfrac{3}{2}AO=\dfrac{3}{2}R=12\)
\(AM=\dfrac{AB\sqrt{3}}{2}\Rightarrow AB=8\sqrt{3}\)
\(S=\dfrac{1}{2}AM.AB=48\sqrt{3}\)
Tam giác ABC đều.
\(\Rightarrow AB=AC=BC\) (Tính chất tam giác đều).
Áp dụng định lý sin vào tam giác ABC đều, ta có:
\(\dfrac{a}{\sin A}=2R.\Rightarrow\dfrac{BC}{\sin60}=2.8.\Leftrightarrow BC=16.\dfrac{\sqrt{3}}{2}=8\sqrt{3}\) (đvđd).
\(\Rightarrow BC^2=192\) (đvđd).
Ta có: \(S=\dfrac{1}{2}ac.\sin B.\)
\(\Rightarrow S=\dfrac{1}{2}BC.AB.\sin60^o=\dfrac{1}{2}.BC^2.\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{4}.192=48\sqrt{3}\) (đvdt).
a) Áp dụng công thức: \(S = \frac{1}{2}bc\sin A\), ta có:
\(S = \frac{1}{2}.14.35.\sin {60^o} = \frac{1}{2}.14.35.\frac{{\sqrt 3 }}{2} \approx 212,2\)
Áp dụng đl cosin, ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)
\(\begin{array}{l}
\Rightarrow {a^2} = {14^2} + {35^2} - 2.14.35.\cos {60^o} = 931\\
\Rightarrow a \approx 30,5
\end{array}\)
\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{30,5}}{{2\sin {{60}^o}}} \approx 17,6\)
b) Ta có: \(p = \frac{1}{2}.(4 + 5 + 3) = 6\)
Áp dụng công thức Heron, ta có:
\(S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {6(6 - 4)(6 - 5)(6 - 3)} = 6.\)
Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{4.5.3}}{{4.6}} = 2,5.\)
\(\widehat{A}=180^o-30^o-44^o=106^o.\)
Áp dụng định lý sin ta có:
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}.\)
\(\Rightarrow\dfrac{BC}{sin106^o}=\dfrac{7}{sin44^o}=\dfrac{AB}{sin30^o}.\)
\(\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{7.sin106^o}{sin44^o}\approx9,7.\\AB=\dfrac{7.sin30^o}{sin44^o}\approx5,0.\end{matrix}\right.\) (đvđd).
\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\sin A\approx\dfrac{1}{2}.5,0.7.\sin106^o\approx17,4\) (đvdt).
\(S=pr=\dfrac{AB+AC+BC}{2}.r.\\ \Rightarrow17,4\approx\dfrac{5,0+7+9,7}{2}.r.\)
\(\Rightarrow r\approx1,6\) (đvđd).