Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
C B M F N A I E O K T
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
DO đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
b: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó: AMCD là hình bình hành
Suy ra: AD=MC và AD//MC
=>AD//BC
c: Xét ΔABC có
M la trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=1/2AB=1/2AC
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M N P 1 2 1 1 1 1
Trên tia đói của tia NM lấy P sao cho MN = NP
Xét \(\Delta AMN\) và \(\Delta CPN\) có :
AN = NC ( gt )
\(\widehat{N_1}=\widehat{N_2}\)( đối đỉnh )
MN = NP ( cách vẽ )
=> \(\Delta AMN\) = \(\Delta CPN\) ( c . g . c) (1)
(1) => CP = AM
=> CP = BM
(1) \(\Rightarrow\widehat{C_1}=\widehat{A_1}\)
=> PC // AB
Xét \(\Delta BMC\) và \(\Delta PCM\) có :
\(\widehat{BMC}=\widehat{PCM}\) ( PC // AB )
Chung MC
MB = PC ( c/m trên )
=> \(\Delta BMC\) = \(\Delta PCM\) (2)
(2) => MP = BC
=> NP = 1 / 2 . MP
=> NP = 1/2 . Bc
(2) => MN // BC
Trên tia đối của tia MN, lấy điểm D sao cho N là trung điểm của MD.
Xét tam giác ANM và tam giác CND có:
AN = CN (N là trung điểm của AC)
ANM = CND (2 góc đối đỉnh)
NM = ND (N là trung điểm của MD)
=> Tam giác ANM = Tam giác CND (c.g.c)
=> AM = CD (2 cạnh tương ứng) mà AM = MB (M là trung điểm của AB) => MB = CD
AMN = CDN (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AM // CD
Xét tam giác BMC và tam giác DCM có:
BM = DC (chứng minh trên)
BMC = DCM (2 góc so le trong, AM // CD)
MC chung
=> Tam giác BMC = Tam giác DCM (c.g.c)
=> BCM = DMC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => MN // BC
MD = BC (2 cạnh tương ứng) mà MD = 2MN (N là trung điểm của MD) => BC = 2MN
![](https://rs.olm.vn/images/avt/0.png?1311)
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau