K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

a)  Xét  \(\Delta HAD\) và    \(\Delta ABD\)  có:

      \(\widehat{AHD}=\widehat{BAD}=90^0\)

     \(\widehat{BDA}\)  chung

suy ra:    \(\Delta HAD~\Delta ABD\)

b)   Áp dụng định lý Pytago ta có:

     \(BD^2=AD^2+AB^2\)

\(\Leftrightarrow\)\(BD^2=15^2+20^2=625\)

\(\Leftrightarrow\)\(BD=\sqrt{625}=25\)cm

    \(\Delta HAD~\Delta ABD\)  \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AD}{BD}\) \(\Rightarrow\) \(AH=\frac{AB.AD}{BD}\)

hay      \(AH=\frac{20.15}{25}=12\)

P/s: tính AH áp dụng ngay hệ thức lượng cx đc

19 tháng 5 2019

bạn tự vẽ hinh nha

1)

Xét tam giác ABC có

hai đường cao BE và CD cắt nhau tại H nên H là trực tâm

do đó \(AH\perp BC\)

mà \(HM\perp BC\)

suy ra AH trùng với HM 

vậy A; H; M thẳng hàng

b) 

dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)

dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)

2)

a)

Xét tam giác ABC và tam giác DEC

có \(\widehat{BAC}=\widehat{CDE}\)

\(\widehat{ACB}\)chung

nên tam giác ABC đồng dạng với tam giác DEC

\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)

b)

Xét tam giác ABC

có AD là đường phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)

Từ (1) và (2) suy ra

\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)

2 tháng 2 2021

Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H

ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé 

2 tháng 2 2021

Gọi I là giao điểm của DE và AH.

Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)

Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)

Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.

Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé

Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)

Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)

Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN

Câu 3. Sử dụng tỉ số  đồng dạng hợp lí rồi suy ra kết quả

Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)

Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)

Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)

Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)

Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)

1 tháng 5 2018

câu b ntn v ạ