Cho tam giác ABC có BC=a, CA=b,AB=c và diện tích tam giác ABC bằng
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

A={1,2,3,4,6,9,12,18.36}

B={3,6,9}

quan hệ: B là tập hợp con của A

E={1,2,4,12,18,36}

hai phần tử thuộc B: {3,6}; {6,9};{3,9}

4 tháng 8 2016

a) A={20;21;22;23;24;25;26}

b) B={1;2;3;4;5;...;27}

c) C={47;48}

29 tháng 4 2019

trục hoành có phương trình y=0

\(\cos=\frac{1}{\sqrt{3+1}\sqrt{1}}=\frac{1}{2}\)

=> 60o

29 tháng 4 2019

ta có đt y = -\(\sqrt{3}\)x -1

\(-\sqrt{3}< 0\) hàm số của đt nghịch biến trên R

gọi α là góc tạo bởi đt với trục hoành, ta có tanα = -a = \(\sqrt{3}\)(a là hệ số góc)

nên α = 120o

21 tháng 11 2016

0,5

4 tháng 1 2016

Theo bất đẳng thức Bunhiacopxki thì

\(\left(ab(2c+a)+bc(2a+b)+ca(2b+c)\right)\left(\dfrac{a^4}{ab(2c+a)}+\dfrac{b^4}{bc(2a+b)}+\dfrac{c^4}{ca(2b+c)}\right)\geq (a^2+b^2+c^2)^2\)

Do đó \(VT\geq \dfrac{(a^2+b^2+c^2)^2}{a^2b+b^2c+c^2a+6abc}\)

Ta có \(3=a+b+c\geq 3\sqrt[3]{abc}, 3(a^2+b^2+c^2)\geq (a+b+c)^2\)

và \(2a^2b\leq a^2b^2+a^2,...\Rightarrow 2(a^2b+b^2c+c^2a)\leq a^2b^2+b^2c^2+c^2a^2+(a^2+b^2+c^2)\)

Mà \(3(a^2b^2+b^2c^2+c^2a^2)\leq (a^2+b^2+c^2)^2\) và \(3(a^2+b^2+c^2)\leq (a^2+b^2+c^2)^2\)

nên ta suy ra đpcm

24 tháng 3 2017

\(VT=\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}+\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}\)

\(VT=\sqrt{\dfrac{b^2c^2}{a^2+ab+ac+bc}}+\sqrt{\dfrac{a^2c^2}{ab+b^2+bc+ca}}+\sqrt{\dfrac{a^2b^2}{ca+bc+c^2+ab}}\)

\(VT=\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{\dfrac{ab}{c+a}+\dfrac{ab}{c+b}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{c+a}+\dfrac{ab}{c+a}\right)}{2}\)

\(\Rightarrow VT\le\dfrac{\left[\dfrac{c\left(a+b\right)}{a+b}\right]+\left[\dfrac{a\left(b+c\right)}{b+c}\right]+\left[\dfrac{b\left(c+a\right)}{c+a}\right]}{2}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ac}{\sqrt{b+ca}}+\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

3 tháng 1 2016

oho khó thế thằng lớp 1 con giải đưc nũa nèlimdim