K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Góc C >60 độ nha. Mình đánh nhầm

24 tháng 3 2017

C<60 mình vẫn nhầm

28 tháng 6 2019

Chọn C

18 tháng 3 2019

Ta sẽ chứng minh c là cạnh nhỏ nhất.

Thật vậy,giả sử c không phải là cạnh nhỏ nhất.

Giả sử \(c\ge a\Rightarrow c+c\ge a+c>b\Rightarrow2c>b\Leftrightarrow4c^2>b^2\)

Do \(c\ge a\) nên \(4c^2+c^2=5c^2\ge a^2+b^2\) (trái với gt)

Với \(c\ge b\) chứng minh tương tự của dẫn đến vô lí.

Do đó c là cạnh nhỏ nhất.Khi đó:

\(a+b+c>3c\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o>3.\widehat{C}\Leftrightarrow\widehat{C}< 60^o\) (đpcm)

Không chắc nha!Sai đừng trách.

18 tháng 3 2019

Giả sử \(c\ge a>0\)\(\Rightarrow c^2\ge a^2\)mà \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\Rightarrow b^2>4a^2\Rightarrow b>2a\) (1)

Vì \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\Rightarrow b^2>4c^2\Rightarrow b>2c\)(2)

Từ (1) và (2) => 2b>2a+2c => b> a + c (vô lý) => c<a

Tương tự ta được c<b => c là độ dài cạnh nhỏ nhất

=> \(\widehat{C}\)là góc nhỏ nhất \(\Rightarrow\widehat{C}< \widehat{A}\)và \(\widehat{C}< \widehat{B}\)

=> \(3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}< 60^o\)

Vậy \(\widehat{C}< 60^o\)(đpcm)

4 tháng 12 2015

BÀI 1 : Ta có tam giác ABC có góc B=góc C=>tam giác ABC cân tại A =>AB=AC

BÀI 2:TA có:tam giác ABC có AB=AC=>Tam giác ABC cân tại A mak koa góc A = 6O độ =>tam giác ABC đều=>AB=AC=BC

                          TICK NHA, MK GIẢI CHI TIẾT LẮM RÙI ĐÓ