Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. cho tam giác abc nhọn có AB=c , AC=b , BC=a
c/m : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Kẻ đường cao AH vuông góc với BC (H \(\in\) BC)
Xét tam giác AHB vuông tại H ta có: \(\sin B=\frac{AH}{c}\Leftrightarrow AH=sinB\times c\) (1)
Xét tam giác AHC vuông tại H ta có: \(\sin C=\frac{AH}{b}\Leftrightarrow AH=\sin C\times b\) (2)
(1),(2)\(\Rightarrow\sin C\times b=\sin B\times c\Leftrightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\)
Rồi bạn chứng minh tương tự nha!
Theo định lý Py-ta-go ta có:
Xét tam giác ABC vuông tại C có:
Đáp án cần chọn là: A
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 ⇒ A B 2 = B C 2 - A C 2
\(\frac{1+cosB}{\sqrt{1-cos^2B}}=\frac{2a+c}{\sqrt{4a^2-c}}\Leftrightarrow\sqrt{\frac{1+cosB}{1-cosB}}=\frac{2a+c}{\sqrt{4a^2-c^2}}\)
\(\Leftrightarrow\frac{1+cosB}{1-cosB}=\frac{4a^2+4ac+c^2}{4a^2-c^2}\)
\(\Leftrightarrow4a^2-c^2+\left(4a^2-c^2\right)cosB=4a^2+4ac+c^2-\left(4a^2+4ac+c^2\right)cosB\)
\(\Leftrightarrow\left(4a^2+2ac\right)cosB=c^2+2ac\)
\(\Leftrightarrow cosB=\frac{c^2+2ac}{4a^2+2ac}=\frac{c\left(c+2a\right)}{2a\left(c+2a\right)}=\frac{c}{2a}\)
\(\Leftrightarrow\frac{a^2+c^2-b^2}{2ac}=\frac{c}{2a}\Leftrightarrow a^2+c^2-b^2=c^2\)
\(\Leftrightarrow a=b\Rightarrow\) tam giác cân tại C