Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tam giác ABC. Các điểm D, E, F lần lượt thuộc AB, AC, BC. chứng minh rằng: a) diện tích ADE trên diện tích ABC bằng AD*AE trên AB*AC . b) Trong 3 tam giác ADE, BDF, CEF tồn tại 1 tam giác có diện tích không vượt quá 1/4 diện tích ABC. Khi nào cả 3 tam giác đó cùng có diện tích = 1/4 diện tích ABC

\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Gọi khoảng cách từ M đến BC là MK. Ta có:
Ta thấy SMBC = SABC khi MK = AH = 3,6 cm
Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.

a)ta thấy AB^2+AC^2=56.25 và BC^2=56.25
=>AB^2+BC^2=BC^2<=>tam jác ABC vuông tại A
Sin B=AC/BC=4.5/7.5<=>B=36độ 52 phút 11.63 giây (bấm shift sin 4.5/7.5 =)
sin c=AB/BC =>C=53đô 7 phút 48.37 giây
Sin C=AH/Ac =>AH=sin C*AC=3.6
b)qua A kẻ đường thẳng d song song BC.diện tích tam jác ABC luôn bằng diện tích tam jác BMC khi M thuộc d.(vì MH sẽ luôn = AH
bn đặt AC=x rồi dùng Hê-rông(cách củ chuối)
để Smax thì chắc là khi tam giác ABC vuông