K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CE ở đâu ra vậy bạn ????

11 tháng 7 2017

À, CE cũng là đường trung tuyến

29 tháng 9 2018

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

29 tháng 9 2018

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

a: DM là phan giác

=>BM/MA=BD/DA

=>5/MA=10/6=5/3

=>MA=3cm

b: ΔBDC có DN là phân giác

nên BN/NC=BD/DC

=>BN/NC=BM/MA

=>MN//AC

10 tháng 12 2017

a) \(\Delta ABC\)có  EA = EB;  DA = DC

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC; ED = \(\frac{BC}{2}\)      (2)

\(\Delta GBC\)có HG = HB; KG = KC

\(\Rightarrow\)HG là đường trung bình của \(\Delta GBK\)

\(\Rightarrow\)HG // BC; HG = \(\frac{BC}{2}\)  (1)

Từ (1); (2) suy ra:  ED = HK;  ED // HK

\(\Rightarrow\)Tứ giác DEHK là hình bình hành

a) Áp dụng định lý Py - ta - go vào tam giác vuông BAD ta có :

=> AB = 8 cm

Mà BM + MA = AB 

=> MA = 8 - 5

=> MA = 3 cm

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình của ΔGBC

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra DE//MN và DE=MN

b:Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)

nên ΔGBC cân tại G

Suy ra: GB=GC

Suy ra: G nằm trên đường trung trực của BC(3)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC