Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, Xét tam giác ABC cân tại A có AH là đường phân giác
nên AH đồng thời là đường cao, là đường trung tuyến
=> AH vuông BC
d, Vì AH là trung tuyến => BH = BC/2 = 4 cm
Theo định lí Pytago tam giác ABH vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2}=3cm\)
e, Xét tam giác ADH và tam giác AEH có :
^ADH = ^AEH = 900
AH _ chung
DAH = ^EAH ( AH là đường phân giác )
Vậy tam giác ADH = tam giác AEH ( ch - gn )
=> HD = HE
Xét tam giác HDE có HD = HE
Vậy tam giác HDE cân tại H
a) BD=BC/2=12/2=6
Vậy BC=6cm
Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:
\(AB^2+BD^2=AD^2\)
\(10^2+6^2=136\)
=> AD=\(\sqrt{136}\)
b) Tam giác ABC cân tại A, đường cao AD
=> AD là đường phân giác góc BAC (1)
Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.
=> AG là pg góc BAC (2)
Từ (1) và (2) => AG và AD trùng nhau.
=>A, G, D thẳng hàng
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
b) Xét ΔADB vuông tại D và ΔEDC vuông tại D có
DB=DC(cmt)
DA=DE(gt)
Do đó: ΔADB=ΔEDC(hai cạnh góc vuông)
Suy ra: AB=EC(Hai cạnh tương ứng)
mà AB=AC(ΔBAC cân tại A)
nên CA=CE
Xét ΔCAE có CA=CE(cmt)
nên ΔCAE cân tại C(Định nghĩa tam giác cân)
a: AC=căn 15^2-9^2=12cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
c: Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>CM=2/3CA=8cm
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE và AD=AE
d: Xét ΔABC có
AD/AB=AE/AC
nên DE//BC